
A FORMAL METHODOLOGY AND TECHNIQUE
FOR VERIFYING COMMUNICATION PROTOCOLS

IN A MULTI-AGENT ENVIRONMENT

THESIS

Timothy H. Lacey, Captain, USAF

AFIT/GCS/ENG/OOM-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

HSG QUALITY IHSFHG3ED 4

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U. S. Government.

20000815 179

AFIT/GCS/ENG/00M-12

A FORMAL METHODOLOGY AND TECHNIQUE

FOR VERIFYING CONVERSATIONS

IN A CLOSED MULTI-AGENT SYSTEM

Timothy H. Lacey, B.S.,
Captain, USAF

Approved:

Maj Scott A. Deloach

Dr. Thomas C. Hartrum

Maj HlichaelL. TalbM date

/# fib 2ooo
date

/.P /^s/ -T-arv
date

22 M> 2ax>

AFIT/GCS/ENG/OOM-12

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my faculty advisor, Maj Scott Deloach,

for his guidance and support throughout the course of this thesis effort. His insight and

experience was certainly appreciated, and his teaching provided a wealth of knowledge that

enabled me to complete this thesis. Thanks to Dr. Tom Hartrum for advice and guidance early on

which greatly decreased the effort required to complete this research and to Maj Michael Talbert

for serving on my Thesis committee. I would also like to thank my sponsor, Captain Freeman

Alex Kilpatrick, from the Air Force Office of Scientific Research, for both the support and

latitude provided to me in this endeavor.

Most importantly, I would like to express great appreciation to my wife Sandy, my sons

Daniel, Joel, Joshua, and Jonathan, and my daughter Shauna, whose unwavering love,

understanding, and sacrifice over the past 18 months allowed me to focus on my studies in this

graduate program. Without their support, completion of this program would have been

impossible.

Timothy H. Lacey

u

AFIT/GCS/ENG/OOM-12

Table of Contents

Page

ACKNOWLEDGMENTS II

TABLE OF FIGURES Vm

I. INTRODUCTION 1

1.1 Background 2

1.2 agentTool 2

1.3 Problem Statement 4

1.4 Assumptions 4

1.5 Thesis Overview 5

II. BACKGROUND 6

2.1 Overview 6

2.2 Multi-agent Systems and Agent Conversations 6

2.3 Verifying Agent Conversations Using Formal Methods 8

2.4 Properties of Communication Systems 10

2.4.1 Generic Properties of Communication Systems 10

2.4.1.1 Deadlock 10

2.4.1.2 Infinite Overtaking 11

2.4.1.3 Livelock 12

2.4.2 User-defined Properties of Communication Systems 12

2.4.2.1 Safety Properties 13

2.4.2.1.1 Nontermination 13

2.4.2.1.2 Conditional Safety 14

2.4.2.2 Liveness Properties 14

2.4.2.2.1 Guarantee Properties 14

HI

AFTT/GCS/ENG/OOM-12

2.4.2.3 Obligation Properties 14

2.4.2.3.1 Response Properties 15

2.4.2.3.2 Persistence Properties 15

2.4.2.3.3 Reactivity Properties 15

2.4.3 Summary 15

2.5 Formal Languages and Automated Verification Tools 16

2.5.1 Communicating Sequential Processes 16

2.5.2 Failures-Divergence Refinement 2 17

2.5.3 Calculus of Communicating Systems 17

2.5.4 The Concurrency WorkBench 19

2.5.5 Process Meta Language 19

2.5.6 Spin 21

2.5.6.1 End states 22

2.5.6.2 Progress states 22

2.5.6.3 Accept states 23

2.5.6.4 Never claims 23

2.5.6.5 Example claim 24

2.5.7 Summary 25

III. METHODOLOGY 26

3.1 Introduction 26

3.2 Modeling Agent Conversations with State Transition Diagrams 26

3.3 Converting a State Transition Diagram to a State Table 28

3.4 Creating Promela Code from a State Table 30

3.4.1 Message Type Declarations 30

3.4.2 Channel Declarations 30

3.4.3 Process Declarations (Proctypes) 31

3.4.4 Process Declarations (Ink) 33

3.4.5 Verifying Message Sequences 33

IV

AFIT/GCS/ENG/OOM-12

3.5 Verifying a Communication Protocol Using Spin 37

3.5.1 Compile the Source Code 37

3.5.2 Generate the Analyzer Files 37

3.5.3 Execute the Analyzer 38

3.6 Interpreting Results 40

3.7 Summary 42

IV. IMPLEMENTATION 44

4.1 Introduction 44

4.2 Verification Overview 44

4.3 System Design 45

4.3.1 Define Conversations 45

4.3.2 Build Conversation State Table 46

4.3.3 Build Promela Code 46

4.3.3.1 Declare mtype Variables 46

4.3.3.2 Declare Channels 47

4.3.3.3 Build Proctypes 47

4.3.3.4 Build init Procedure 48

4.3.3.5 Build Never Claim 48

4.3.4 Check for Valid Conversations 49

4.3.5 Check for Deadlock 50

4.3.6 Check for Non-Progress 51

4.3.7 Check Valid Sequence 51

4.3.8 Provide Feedback 51

4.4 Examples 52

4.4.1 Conversation without Error 52

4.4.2 Conversation with Error 56

4.4.3 Message Sequence Verification 60

4.5 Analysis 62

AFIT/GCS/ENG/OOM-12

4.5.1 Errors Detected 62

4.5.1.1 Conversation Deadlocks 62

4.5.1.2 Unused States 63

4.5.1.3 Unused Messages 64

4.5.1.4 Mislabeled Transitions 64

4.5.1.5 Inability to Create Required Sequences 65

4.5.2 Undetectable Errors 65

4.5.2.1 Timing Errors 66

4.5.2.2 Floating States 66

4.5.2.3 Hardware Failures 67

4.5.2.4 Guard Conditions 67

4.5.2.5 Interacting Conversations Deadlock 67

4.6 Summary 68

V. CONCLUSIONS AND FUTURE WORK 69

5.1 Introduction 69

5.2 Conclusions 69

5.2.1 Automatic Verification of Multi-agent Conversations 69

5.2.2 Implementation with agentTool 71

5.3 Future Work 71

5.3.1 Development of a Syntax Checker 72

5.3.2 Verification of an Agent's State-based Behavior 73

5.4 Summary 73

BIBLIOGRAPHY 75

APPENDIX A: MESSAGES FOR ERROR CONVERSATION 77

APPENDIX B: MESSAGES FROM MESSAGE SEQUENCE VERD7ICATION 78

VI

AFIT/GCS/ENG/OOM-12

VITA 80

vu

AFIT/GCS/ENG/OOM-12

TABLE OF FIGURES

Figure Page

FIGURE 1: INITIATOR HALF OF CONVERSATION SENDINFO (DELOACH, 1999) _ 7

FIGURE 2: RESPONDER HALF OF CONVERSATION SENDINFO (DELOACH, 1999) „ 7

FIGURE 3: TOP LEVEL VIEW OF METHODOLOGY 27

FIGURE 4: INITIATOR HALF OF CONVERSATION SENDINFO _....28

FIGURE 5: RESPONDER HALF OF CONVERSATION SENDINFO _ 28

FIGURE 6: STATE TABLE OF CONVERSATION SENDINFO 29

FIGURE 7: PROCESS SENDINFORESPONDER _ 32

FIGURE 8: PROCESS SENDINFOINITIATOR 32

FIGURE 9: INIT PROCESS FOR SENDINFO CONVERSATION 33

FIGURE 10: COMPLETE PROMELA CODE FOR SENDINFO CONVERSATION 34

FIGURE 11: MESSAGE SEQUENCE CHART 35

FIGURE 12: MESSAGE SEQUENCE TABLE 35

FIGURE 13: NEVER CLAIM FOR MESSAGE SEQUENCE VERIFICATION 36

FIGURE 13: MESSAGE TRACE OF MESSAGE SEQUENCE VERIFICATION 39

FIGURE 14: SPIN OUTPUT OF SENDINFO CONVERSATION 41

FIGURE 15: SPIN OUTPUT OF DETECTED DEADLOCK 42

FIGURE 16: SPIN OUTPUT OF DETECTED NON-PROGRESS STATE 43

FIGURE 17: VERIFICATION DATA FLOW DIAGRAM _ 45

FIGURE 18: CONVERSATION BETWEEN AGENTS — 52

FIGURE 19: INITIATOR SIDE OF SENDINFO CONVERSATION 53

FIGURE 20: RESPONDER SIDE OF SENDINFO CONVERSATION 54

FIGURE 21: PROMELA CODE OF SENDINFO CONVERSATION _....55

vui

AFIT/GCS/ENG/OOM-12

FIGURE 22: OUTPUT FROM SENDINFO VERIFICATION RUN 56

FIGURE 23: Two CONVERSATIONS WITH THREE AGENTS 56

FIGURE 24INITIATOR SIDE OF COLLECTDATA CONVERSATION 57

FIGURE 25 :RESPONDER SIDE OF COLLECTDATA CONVERSATION 57

FIGURE 26: PROMELA SOURCE CODE FOR COLUECTDATA CONVERSATION 58

FIGURE 27: SEQUENCE TRACE OF COLLECTDATA CONVERSATION 59

FIGURE 28: HIGHLIGHTED TRANSITION FROM COLLECTDATA CONVERSATION 60

FIGURE 29: DEADLOCK MESSAGES FROM MESSAGE WINDOW 60

FIGURE 30: MESSAGE SEQUENCE CHART FOR SENDINFO AND COLLECTDATA CONVERSATIONS 61

FIGURE 31: MESSAGE SEQUENCE TABLE FOR SENDINFO AND COLLECTDATA CONVERSATIONS 61

FIGURE 32: INVALID MESSAGE SEQUENCE TABLE 61

FIGURE 33: INVALID MESSAGE SEQUENCE OUTPUT 62

FIGURE 34: CONVERSATION WITH DEADLOCK CONDITION DETECTED 63

FIGURE 35: CONVERSATION WITH UNUSED STATE DETECTED 63

FIGURE 36: CONVERSATION WITH UNUSED MESSAGE DETECTED 64

FIGURE 37: CONVERSATION ERROR MESSAGES FROM MISLABELED TRANSITION 65

FIGURE 38: TIMING ERROR NOT DETECTED IN CONVERSATION 66

FIGURE 39: FLOATING STATE IN CONVERSATION 67

FIGURE 40: INCORRECTLY SPECIFIED GUARD CONDITION IN CONVERSATION 68

FIGURE 41 INTERACTING CONVERSATIONS DEADLOCK 68

FIGURE 42: STATE TRANSITION DIAGRAM 70

FIGURE 43: MESSAGE SEQUENCE CHART 71

FIGURE 44: AGENT STATE BASED INTERIOR (ROBINSON, 2000) 73

IX

AFIT/GCS/ENG/OOM-12

ABSTRACT

As network bandwidth increases, distributed applications are becoming increasingly

prevalent. Systems using these applications are very complicated to build and must be

dependable. Software agents are ideal for breaking complicated problems into manageable

subtasks. Agent conversations, a series of messages passed between agents, are the cornerstone

of multi-agent systems and must be deemed correct before being placed into service. The

purpose of this research was to develop a formal methodology and technique to verify that the

communication protocols defined in a multi-agent environment were valid. This was

accomplished by examining agent conversations before deploying the system. An additional goal

of this research was to develop a proof-of-concept module for agentTool that automatically

verified some of the important properties identified in this methodology.

AFTT/GCS/ENG/OOM-12

A FORMAL METHODOLOGY AND TECHNIQUE

FOR VERIFYING CONVERSATIONS

IN A CLOSED MULTI-AGENT SYSTEM

/. Introduction

As network bandwidth increases, the Air Force is fielding increasingly distributed C3I

applications. This is clearly delineated by visionary documents such as Joint Vision 2010

(Shalikashvili, 1999), and Air Force 2025 (Kelley, 1996). The common thread in each of these

documents is information superiority, which the Air Force believes will be the key factor to

success in the 21st century. Distributed systems such as those required by the Air Force are very

complicated to build, but must be dependable if the warfighters whose lives are at risk are going

to trust them. Therefore, software engineers must ensure that the system and its information

sources are robust, reliable, and secure. The Air Force's Office of Scientific Research is

sponsoring research in intelligent software agents because they believe software agents are the

appropriate mechanism for delivering these capabilities to the user. Distributed agents are well

suited to applications that retrieve, filter, and summarize information as well as provide

intelligent user interfaces and planning. The size and complexity of such a worldwide-distributed

system will necessitate formal and rigorous approaches to ensuring the entire system will be

interoperable and secure.

Before a multi-agent system can be trusted to perform as expected, the communication

methods between the agents must be formally verified. The verification process includes

checking for infinite loops, deadlocks, and other communication pitfalls that would prevent a

AFIT/GCS/ENG/00M-12

multi-agent system from completing its mission. This thesis designs and implements a

methodology using formal methods that verifies that a system of agents will communicate as

expected before a user deploys the system. Then, and only then, the user of the multi-agent

system can be assured the system will communicate as expected.

1.1 Background

Many agent-based systems consist mainly of single agents. These agents do not have the

capability to cooperate with other agents and jointly solve a problem. However, advances in

technology and programming languages have enabled software engineers to create systems of

multiple agents that "team up" to solve tough problems. It is apparent that agents in multi-agent

systems have to communicate in a distributed environment and pool resources to solve problems.

The best way for software developers to tackle complex, large, or unpredictable domains

is by breaking the problem into smaller, manageable tasks. Software agents can be used to solve

these small tasks while working together to solve larger problems. Katia Sycara has observed

that often agents must operate concurrently in a distributed environment to accomplish difficult

tasks (Sycara, 1998).

1.2 agentTool

Agents communicate with each other using patterns of messages called conversations.

Conversations may be structured and predictable, or they may be unstructured and dynamic.

Structured conversations can be modeled using state transition diagrams. Given a set of

conversation state transition diagrams, communication between agents can be simulated and all

possible message combinations exercised. Using this approach, conversations are deemed valid if

the desired message sequence takes place between the communicating agents. This process of

deeming the conversations valid or invalid is called verifying the agent conversations.

AFIT/GCS/ENG/OOM-12

Conversations can be verified manually (by a human analyst) or automatically (by intelligent

software and automated tools).

The software development environment, agentTool, is being created at the Air Force

Institute of Technology (AFIT) to address the need for a user friendly, robust tool for building

multi-agent systems. The tool is designed to be an integrated environment that allows a user to

graphically engineer a multi-agent system, verify the agent conversations with an automated

verification tool, and automatically generate the source code for the designed system. This allows

a user to specify a multi-agent system at three levels: domain, agent, and component. The

domain level is where agent classes and interactions are defined. The agent level is where the

internal agent architecture is defined. Lastly, the component level is where individual

components in the system architecture are defined. During the domain level design, the

communications between agents are specified as conversations. The system uses an automated

verification tool and formal modeling languages to verify these conversations are valid.

Feedback is provided to the user indicating whether the conversation design is valid. The

automatic verification of agent conversations and message sequences using formal methods is the

focus of this research effort.

The agentTool system incorporates the latest technology in multi-agent systems. A

designer uses pre-defined or user-defined components while building an agent system and

implements the system on various frameworks (Robinson, 2000). Users build agent systems with

graphical analysis and design tools that are easy and intuitive to use (Wood, 2000). A knowledge

base preserves agent designs and components providing agentTool with reusability, robustness,

and extensibility (Rafael, 2000).

AFIT/GCS/ENG/00M-12

1.3 Problem Statement

Infinite loops, deadlocks, and other communication pitfalls can wreak havoc in a multi-

agent system. Even worse, the system can appear to be working while an undetected catastrophic

problem exists. The challenge is to explore paths that the conversation can feasibly encounter

and formally verify the conversation is valid. Once the conversations have been verified, the user

can trust the agents to communicate as expected.

Researchers at AFTT are currently developing agentTool. To ensure security and

interoperability, agentTool must be able to enforce protocol policy on a proposed system.

Therefore, the goal of this research is to develop a formal methodology and technique to verify

that the communication protocols defined in a multi-agent environment are valid. This is

accomplished by examining agent conversations before deploying the system. An additional goal

of this research is to develop a proof-of-concept module for agentTool that automatically verifies

some of the important properties identified in this methodology.

1.4 Assumptions

The following are assumptions concerning agentTool, designed agents, and their

operating environment.

1) Agents designed in agentTool will be used in a closed environment. A closed

environment is one in which all participants are known and all conversations are

predetermined. An agent's behavior is predictable and agents communicate with

each other via conversations.

2) Agents can assume more than one role at a time, and can be involved in multiple

conversations at any given time.

AHT/GCS/ENG/OOM-12

3) Conversations can be started from within other conversations.

4) System variables can impact conversations in adverse ways. It is possible for an

external factor to prevent a conversation from completing, even though the

conversation is perfectly valid and has been verified. Therefore, it is assumed

agentTool will not be able to detect errors caused by system variables while verifying

conversations.

1.5 Thesis Overview

Chapter 2 provides a review of the relevant literature and research including formal

languages, automated verification tools, and the types of agent conversation properties that can be

verified. Chapter 3 specifies a methodology that takes a conversation specification and verifies it

using an automated tool. Chapter 4 describes the application of the verification methodology and

the prototype to agentTool. Finally, Chapter 5 presents conclusions and future work.

AHT/GCS/ENG/OOM-12

//. Background

2.1 Overview

This chapter reviews verifiable properties of agent conversations, and some of the

languages and tools available for verifying properties of agent conversations. Section 2.2

explains how agents use conversations and how to model them. Why formal methods are needed

to verify conversations is covered in Section 2.3. Section 2.4 describes properties of agents that

are verifiable while providing simple examples of such properties. Finally, Section 2.5 presents

three formal languages and corresponding automated verification tools for verifying agent

conversations.

2.2 Multi-agent Systems and Agent Conversations

Agents in a multi-agent environment should communicate with each other with structured

messages. This enables the users of the multi-agent system to have assurance agents will perform

as designed without unpredictably performing some unassigned task autonomously. The

structured sequence of messages is called an agent conversation. Granted, there are occasions

when agents are used in open environments where they may encounter any type of agent. In an

open environment, an agent must be able to dynamically construct its conversations. However,

this research is concerned with closed environments where agents are aware of their surroundings

and know who their fellow agents are. Perhaps most importantly, each agent knows how it is

supposed to communicate with its fellow agents. Whenever an agent sends or receives a

message, it passes through various states of a conversation. These states determine how the agent

behaves.

AFIT/GCS/ENG/OOM-12

An agent conversation consists of an initiator side and a responder side. Both sides of

the conversation move through various states in harmony as the conversation develops.

Eventually, both sides of the conversation will end up in its respective end state and the

conversation will be completed. It is the state transition diagram that allows one to visualize the

various states a conversation goes through and records the events that cause the conversation to

move from state to state.

Figure 1 illustrates one side of a conversation and Figure 2 illustrates the complimentary

side of the conversation. The two sides make up one complete conversation.

failure-transmission''send(information)
Sendlnfo: initiator

^end(information)
•-■"■

wait
\

)
/

acknowledge

Figure 1: Initiator Half of Conversation Sendlnfo (DeLoach, 1999)

Sendlnfo: responder wail

sendf informat w)

,, [invaliddata]"failuretransmission

send(information) | validation

do: validate(information)

a^ [valiiMataNcknowfedge

Figure 2: Responder Half of Conversation Sendlnfo (DeLoach, 1999)

The beginning state in a conversation is the "start" state. It is signified by a solid circle.

The final state in a conversation is the "end" state and is signified by a solid circle with a ring

drawn around it. Each intermediary state is drawn as an unfilled rounded edge rectangle. The

state's name is inside the rectangle. Arrows between states indicate transitions between those

AFIT/GCS/ENG/OOM-12

states and the direction of the transition. Labels on the arrows indicate the events and actions that

take place to cause a transition from one state to another. The transition labels follow Unified

Modeling Language (UML) notation. The labels are formatted as follows:

event-name(argument list)[guard condition]/action-expression^send-
clause

The label may contain some or all of this information. Each state may have more than

one entry point and exit point, but all exit points must be deterministic. Referring to Figure 4,

there are three states in the initiator side of the Sendlnfo conversation. They are the start, wait

and end states. The transition from the start state to the wait state sends a

send (information) message. The information is a parameter that is passed with the

message. The transition from the wait state back to the wait state takes place when a

failure-transmission message is received while in the wait state. This transition receives

a failure-transmission message then sends a send (information) message before

transitioning back to the wait state. Finally, the transition from the wait state to the end state

takes place when an acknowledge message is received while in the wait state. No messages

are sent during this transition and this side of the conversation ends.

2.3 Verifying Agent Conversations Using Formal Methods

Multi-agent software systems are difficult to build. Part of the research community

believes multi-agent systems should be open ended and conversations between various agents

should be dynamic and flexible (Sycara, 1998). Another part of the community believes agent

conversations should be predetermined and structured so that all possible variants of a

conversation are reproducible and verifiable (Harel, 1987). Some researchers have undertaken an

effort to develop formal approaches to assist the software developer in the analysis and design of

multi-agent systems (Holzmann, 1987). Fortunately, automated tool support is also available to

AFIT/GCS/ENG/OOM-12

assist with formal methods. Many tools have been developed that analyze concurrent systems.

These tools can also be used to verify agent conversations.

One of the simplest ways to verify agent conversations is with a technique called

reachability analysis (Cleaveland, 1993). Automated tools are excellent for this technique. The

first step in using an automated tool is to model the conversation using a language accepted by

the tool. Some of the most popular languages to choose from are Communicating Sequential

Processes (CSP) (Hoare, 1985), Calculus of Communicating Systems (CCS) (Milner, 1989), and

Process Meta Language (Promela) (Holzmann, 1997). After modeling the proposed system using

the required input language, the user may provide logical formulae describing undesirable states

that the system should never reach. Given such formulae and the system description, the tool

explores every possible state the conversation may reach during execution and checks to see if an

undesirable state is reachable. If so, the automated tool reports a description of the execution

sequence leading to the offending state. Using this approach, automated tools can find many

undesirable conditions such as deadlock and critical section violations.

Reachability analysis falls under a more general type of verification called model

checking (Cleaveland, 1993). Using this approach, an analyst describes a conversation using a

design language, and then specifies properties the conversation should have as logical formulae.

These formulae define behaviors the conversation should, or should not have as it executes and

contains temporal operators enabling one to describe how a conversation behaves as time passes.

Using such a temporal logic one can state properties such as the following:

• The variable p will eventually become true

• It is mandated that after p becomes true, q will become true and remain true

AHT/GCS/ENG/OOM-12

In the next section, an overview of communication system properties and the various

methods of describing system properties are provided.

2.4 Properties of Communication Systems

Properties of communication systems in general fall under two broad categories: generic

and user-specified properties. Generic properties that are applicable to all communication

systems are deadlock, infinite overtaking, and livelock. User-specified properties of

communication systems can be further broken down into safety and liveness properties.

2.4.1 Generic Properties of Communication Systems

2.4.1.1 Deadlock

A deadlock is a situation in which two computer programs sharing the same resource

effectively prevent each other from accessing the resource, resulting in both programs blocked.

When computer operating systems run only one program at a time all of the resources of the

system are available to this one program. However, when operating systems run multiple

programs at once, interleaving them with each other, programs can request resources

dynamically. This can lead to the problem of deadlock. Here is a very simple example:

Program one requests resource A and receives it.
Program two requests resource B and receives it.
Program one requests resource B and waits for program two to

release it.
Program two requests resource A and waits for program one to

release it.

Now neither program can proceed until the other program releases a resource. The

operating system has a dilemma and cannot know what action to take. At this point, the only

alternative is to kill one of the programs. Learning how to handle deadlock situations has had a

major impact on the development of not only operating systems but also communicating systems

in general.

10

AFIT/GCS/ENG/OOM-12

In agent conversations, deadlock can occur when both sides of a conversation wait to

receive a message that never arrives. This dilemma can happen many ways. The message could

be lost, an incorrect message could be sent, or the message could not be sent at all.

2.4.1.2 Infinite Overtaking

To demonstrate the concept of infinite overtaking, recall the infamous dining

philosophers' example as portrayed by C.A.R. Hoare in his book, Communicating Sequential

Processes (Hoare, 1985). A round table has been prepared with five chairs containing five

philosophers and a bowl of pasta in the middle of the table. Each of the philosophers has a fork

on the table between him and the other philosophers; thus, there are five forks in all. Before a

philosopher can eat, he must have a fork in each hand. This means that not all five philosophers

can eat at one time. Suppose a seated philosopher has a greedy left neighbor and a rather slow

left arm. Before he can pick up his left fork, his left neighbor rushes in, sits down, quickly picks

up his left and right forks, and has his fill of pasta. Eventually he puts down both forks and gets

up to leave. Then the left neighbor gets hungry again, sits down, and quickly grabs both of his

forks before his right neighbor has an opportunity to pick up the fork they share. Since the

philosopher with the bottomless stomach can repeat this cycle forever, the seated philosopher to

his right may starve to death.

One such agent-based scenario is where an agent requests information from a pool of

information brokers. If one of the brokers happens to be extremely quick, the remaining brokers

will never be able to answer any requests for information. The real loser in this scenario may be

the requester, for he may only get information from one source.

11

AFIT/GCS/ENG/OOM-12

2.4.1.3 Livelock

Livelock is a situation in which some critical stage of a task is unable to finish its

processing. This is because the users of this particular task continuously create more work for

the task to do after the critical stage of the task has provided the requested service for them but

before the given task can clear its request queue. Livelock differs from deadlock in that the

process is not blocked or waiting for anything but has a virtually infinite amount of work to do

and can never catch up. An example of livelock is that of an interrupt driven operating system. If

too many interrupts arrive at the operating system's kernel and then continue to bombard the

kernel, the operating system will not be able to actually service any of the interrupt requests

because it will spend all of its time processing the receiving of the interrupts. In other words, the

operating system is so busy receiving interrupt requests it cannot service any of the requests.

Agent conversations can also succumb to livelock. A broker agent could be inundated

with requests for information to the point where he could never respond to all the requests

because his time is spent processing the receipt of requests.

2.4.2 User-defined Properties of Communication Systems

It is easy to take a snapshot of a system and analyze its properties. However, often it is

more desirable to know if eventually something will happen or conversely, that something will

never happen. This type of system property can be described using temporal operators. Many

properties of agent conversations can be expressed with temporal operators. For example, we

might want to know that if message A is sent to a recipient, eventually a reply will be received.

This property can be stated as "it is always the case that eventually we receive a reply from the

recipient." This is commonly known as message sequence verification.

12

AFIT/GCS/ENG/OOM-12

Temporal logic is simply an extension of propositional logic. The difference between the

two is that temporal logic has special operators that allow for time. Amir Pnueli defines a

temporal operator called the henceforth operator [] (Manna, 1992). An example of how this

operator would be used is [] p, read henceforth p or always p. Therefore, [] p holds at position q

if and only if p holds at position q and all of the following positions from now until

eternity.

Pnueli also defines a temporal operator called the eventually operator <>. An example of

this operator is <>p, read as eventually p. Therefore, <>p holds at position j if and only if

p becomes true at some position q where q>=j.

The combination of temporal operators can be used to form many types of user-defined

properties. The next few sections accent the types of conversation properties that can be

expressed with temporal operators.

2.4.2.1 Safety Properties

Safety properties have the form "bad things will not happen." These properties are

expressed by logical statements that the system state must satisfy at all times as well as pre and

post conditions. Preconditions reflect the state of a program before the execution of a set of

statements. Postconditions reflect the state of a program after the termination of a set of

statements.

2.4.2.1.1 Nontermination

As an example of a user-defined safety property, consider the property of nontermination

of a conversation. A conversation is nonterminating if it never enters an end state. This property

can be expressed by the formula [] (-iterminal).

13

AFIT/GCS/ENG/OOM-12

2.4.2.1.2 Conditional Safety

An example of a conditional safety formula is p-> [] q. In this case, whenever the state

formula p becomes true, the state formula q must be true forevermore. Applied to an agent

conversation, if a sender of a message receives a reply acknowledging receipt of said message,

the sender's conversation will terminate and stay terminated.

2.4.2.2 Liveness Properties

Liveness properties have the form "good things will happen." Examples of liveness

properties include termination or non-termination requirements in programs.

2.4.2.2.1 Guarantee Properties

Guarantee formulas state that some property will eventually happen. They guarantee that

the event happens at least once, but make no promises of the event repeating. In fact, it doesn't

matter if the event happens again, as long as it happens once. Therefore, guarantee formulas are

used to ensure events happen at least once in the lifetime of a program execution, such as

program termination.

An example of this property applied to an agent conversation is <> end. This means that

a conversation eventually enters the end state and terminates. This concept is also used to check

for the existence of livelock. If a process or conversation does not end when it is designed to end,

it is evidently caught in a livelock situation.

2.4.2.3 Obligation Properties

Sometimes a safety or liveness property alone does not sufficiently describe the desired

state of the system or conversation. In this case, a combination of the two types of properties is

14

AFIT/GCS/ENG/OOM-12

needed. An obligation formula is a formula of the form [] p || <>q. As expected, this formula

states that either p holds at all positions of a computation or q holds at some position.

2.4.2.3.1 Response Properties

An example of a response property is [] <>p. This property states that p can be satisfied

infinitely many times in the computation, but at least once. Applied to an agent conversation, a

response property would be used in the following scenario. A sender sends a message to a

receiver and waits a specified amount of time for an acknowledgment. If the acknowledgment

doesn't come, the message is sent again until an acknowledgment finally arrives.

2.4.2.3.2 Persistence Properties

Persistence properties are specified as <> [] p. This property states that all positions from

a certain point on in a computation or conversation will satisfy p. Persistence formulas are used

to describe the eventual stabilization of some state or property of the system or conversation.

These properties allow an unspecified and varying delay until the stabilization occurs, but

mandate that after occurring, it must be continuously maintained.

2.4.2.3.3 Reactivity Properties

Reactivity formulas are formed by a disjunction of a response formula and a persistence

formula [] <>p | | <> [] q. This formula states that either p occurs infinitely many times or q

occurs all but a finite number of times.

2.4.3 Summary

Many properties of systems can be verified with an automated verification tool, including

temporal properties. A system designer must first model the proposed system and then he can

simply define a system's behavior over time using temporal formulas. Automated tools can then

15

AFIT/GCS/ENG/OOM-12

search the entire state space of the system to verify that general communication faults are not

present and the described temporal properties hold true.

2.5 Formal Languages and Automated Verification Tools

This section provides an overview of three formal languages and three automated tools

that are used to model and verify communication systems. They are Communicating Sequential

Processes (CSP), Failures-Divergence Refinement 2 (FDR2), Calculus of Communicating

Systems (CCS), Concurrency WorkBench (CWB), Process Meta Language (Promela) and Spin.

Together, these languages and tools help an analyst verify that a system design will perform

correctly.

2.5.1 Communicating Sequential Processes

C.A.R. Hoare first described CSP in a 1978 paper. The basic ideas from his original

paper were later adjusted and updated to produce a more flexible version of CSP (Hoare, 1985).

As an example of CSP syntax, consider a clock that never does anything but tick. The keyword

CLOCK describes the process and the keyword tick describes an event within the process (Hoare,

1985).

CLOCK = (tick->CLOCK)

This simple example illustrates a CSP recursive model. CSP allows the description of

systems as a group of individual processes, which communicate with each other over channels.

(Hoare eventually determined that component processes did not have to be sequential, but the

name was already established.)

The modularization of CSP fits the structure of many problems very well. With CSP, an

analyst models a system as a network of processes that communicate via messages along

16

AFIT/GCS/ENG/OOM-12

unidirectional channels. The transfer of messages between processes is synchronous, which

means the sending or receiving process stalls until the system transfers the message.

2.5.2 Failures-Divergence Refinement 2

FDR2 is a tool that allows an analyst to define a finite-state based system and then verify

the system is correctly designed (Lowe, 1997). It is based on the theory of Communicating

Sequential Processes (CSP). The theory of refinement in CSP enables a system engineer to

describe a wide range of correctness conditions, including freedom from deadlock and livelock as

well as safety and liveness properties.

Early versions of FDR could analyze systems with 107 states in a modest amount of time

on standard workstations. The most current version of FDR2 incorporates hierarchical

abstraction and compression routines that allow systems with very large state-spaces, (72*1024) for

example, to be analyzed in minutes.

FDR2 is simple to use and has extensive debugging facilities to support system

development. If an error is detected during a verification process, FDR2 provides a description of

the system state at the point where FDR2 detected the error, as well as the sequence of events that

lead to the error.

2.5.3 Calculus of Communicating Systems

Robin Milner's work on CCS developed from an experiment in 1972. While working in

the Artificial Intelligence Laboratory at Stanford, he tried to apply ideas learned while working

on sequential programming to a concurrent programming language. However, he found this was

not possible (Milner, 1989). One of the problems he ran into was because of an incorrect

assumption. One way to decipher a sequential program is as a mathematical function over system

memory states. If one knows the function corresponding to a particular program and the start

17

AFIT/GCS/ENG/OOM-12

state, then one can figure out the end state. The only problem with this approach is that it

assumes the program has exclusive control of the memory. If something interferes with the

memory, then unpredictable states result.

Two programs that have the same function can behave very differently when subjected to

the same interference. Milner gives a simple example where two lines of a computer program

have exactly the same effect, in the absence of interference:

1) x:=l 2)x:=0; x:=x+l

However, suppose some other process at some unpredictable moment performs x:=l.

Then the total effect of fragment 1 plus the other processes execution is different from that of

fragment 2 plus the offending process. In fragment 2, the value of x could be either 1 or 2,

depending on the given situation. This simple example demonstrates that in the presence of

concurrency or interference, programs do not have exclusive rights to memory, but instead

programs interact with each other while sharing memory.

This experiment prompted Milner to find an alternate theory in which communication

was the focus. In 1977 Milner learned of Hoare's work with CSP and realized that he and Hoare

both recognized that a new concept was needed, the concept of indivisible interaction. Milner

also started a concept called observation equivalence of processes. The theory of observation

equivalence was recorded in "A Calculus of Communicating Systems", published in 1980

(Milner, 1989).

An example of CCS follows.

C = infx).C'(x)
C(x) = out(x).C

Milner points out that agent names like C or C can take parameters (Milner, 1989). In this case

c takes one parameter but C takes none. The prefix "in(x) ." means a handshake takes place

18

AHT/GCS/ENG/OOM-12

where a value is received at port in and the variable x becomes equal to that value.

in(x) .c (x) is an agent expression. It is required to perform the aforementioned handshake

and then continue according to the definition of c'. The statement, out (x) . c, is also an agent

expression. This agent's behavior is to place the value of x at port out and then continue

according to the definition of c.

2.5.4 The Concurrency WorkBench

The Edinburgh Concurrency Workbench is an automated tool designed to manipulate and

analyze concurrent systems (Stevens, 1998). The CWB enables its users to check their systems in

many different ways. The definition language for CWB is CCS. With CWB, users can perform

tests on specified systems such as reachability analysis and model checking. Users can also

verify systems defined with temporal properties. CWB allows users to interactively simulate the

behavior of an agent. This is accomplished by guiding the agent through its state space in a

controlled fashion.

2.5.5 Process Meta Language

Promela differs from the languages discussed thus far in that it is a modeling language.

As such, it is used to abstractly model communication protocols (Holzmann, 1997). Promela is

perfectly suited for modeling agent conversations. Conversations are modeled as processes,

conversation paths are modeled as channels, and variables that may be used in a conversation can

be defined and tested. All statements are either executable or blocked, waiting to execute.

Statements may be blocked if the statement is a conditional statement and the condition is false.

In this case, the statement blocks until the condition becomes true. This property provides a

means of synchronizing communications between processes by causing one process (a responder)

19

AFIT/GCS/ENG/OOM-12

to wait on a message sent by another process (the initiator) while in a specific state. The

initiating process may also block while waiting on a reply from the responding process.

Promela processes are defined with the word proctype. The following is an example of

a proctype declaration.

proctype ProcessAO
{

byte newVariable,-
newVariable = 3

}

The name of this process is Process A and curly braces encapsulate the body of the

declaration. Promela declarations can contain zero or many statements as well as local variable

declarations. The proctype declaration above contains one local variable declaration,

newVariable, and a single statement: an assignment of the value 3 to the variable

newVariable. In Promela, semicolons and arrows '->' separate statements. Therefore, in the

above example no semicolon is needed after the last statement. The arrow is sometimes used as a

way to indicate a causal relation between two statements. For example:

byte newVariable = 2;
proctype ProcessAO
{

(newVariable ==1) -> newVariable = 3
}
proctype ProcessBO
{

newVariable = newVariable - 1
}

This example declares two processes, ProcessA and ProcessB. Since the variable

declaration newVariable is outside all processes, it is a global variable initialized to the value of

two. ProcessA contains two statements and ProcessB contains a single statement that

decrements newVariable by one. An assignment is always executable, so ProcessB does not

block and executes immediately. However, if a condition is not true, then the process is blocked

20

AFIT/GCS/ENG/OOM-12

until the condition becomes true. Therefore, ProcessA is blocked at the condition

(newVariable==l) until the value of newVariable is equal to one.

A proctype is only a process. It cannot run on its own. Something must start the

process running. Spin uses a process called init to start other processes running. The init

process is similar to a main procedure in Java programs. An init process declaration for the

previous example would look as follows:

init
{

run ProcessA();
run ProcessBO

}

In this example, the keyword run kicks off the two processes. Parameters can also be

passed when invoking processes with the run statement. For example, run

ProcessA (parameter!.).

2.5.6 Spin

Spin is an automated verification tool from Bell Labs that operates on the Promela

modeling language. It is designed to verify software instead of hardware and has been used to

verify many distributed systems and communication protocols (Holzmann, 1997). Spin will

detect deadlock, livelock, assertion violations, and many other communication centric errors.

Spin supports both synchronous and asynchronous communications by using channels to

pass messages and varying the channel buffer size. If the channel buffer size is zero, then the

communications are synchronous. If the channel buffer size is greater than zero, the

communications are asynchronous.

With Spin, many types of simulations are possible. A user may choose to perform a

random simulation, or a guided simulation. A user may also choose to perform a verification that

21

AHT/GCS/ENG/OOM-12

exhaustively searches the entire state space of the model for errors. If Spin finds an error, the

user can then perform a guided simulation that will reproduce the condition that caused the error.

This technique is very helpful for finding and pinpointing errors in models.

Spin can also catch correctness violations by checking for the existence of execution

sequences that abort because an assert statement has been violated. An assert statement

mandates that the asserted statement must remain true at all times.

To verify a system model is correct, Spin uses three specialized Promela states and

analyzes temporal formulas like those mentioned in previous sections. End states, progress

states, and accept states are used along with never claims to verify models. These features will

be covered in the next few sections.

2.5.6.1 End states

If a process does not complete its processing before the system terminates, Spin flags the

process as being in an invalid end-state. This is a common technique used to detect deadlock. If

a system designer designs a process so that it can stop without completing, then the process has to

be marked with an end label.

2.5.6.2 Progress states

Spin uses progress states to detect the presence of infinite overtaking by keeping track

of how often Spin executes a process labeled with a progress label. Spin will produce an error

if it cannot execute a progress labeled process an infinite number of times. In other words, any

process labeled with a progress label cannot remain blocked indefinitely from executing.

An example of the use of a progress label is:

proctype ProcessA(){
do
:: chanAtoBlp -> progress: chanAtoB?v
od}

22

AFIT/GCS/ENG/OOM-12

The presence of the progress label requires the statement chanAtoB?v be executed

infinitely many times. The only way this statement can be executed infinitely many times is if the

statement chanAtoB !p can also be executed infinitely many times.

2.5.6.3 Accept states

The accept state is treated exactly the opposite as the progress state and is used to

detect correctness of temporal property specifications. If Spin enters an accept state an infinite

number of times, an error is produced. A user can label a "trap" state with an accept label and

then Spin will check an infinite number of times if it can enter the trap state. If it can, then the

condition leading to the trap state has been met and Spin has succeeded in catching the error

condition.

The following process demonstrates the use of an accept state. This process should

eventually block at the beginning of the statement chanAtoBlp. If this process did not

eventually block at this statement, then the process would run forever, and this would cause Spin

to produce an error. The accept state would be visited infinitely often because the process

would run forever, thus creating the error condition.

proctype ProcessAO
{ do

:: chanAtoBlp -> accept: chanAtoB?v
od

}

2.5.6.4 Never claims

Spin uses never claims to define temporal formulas. These never claims are then used

to check for undesirable or illegal state properties. Spin will produce an error if it finds any

execution sequence that ends where the never claim has terminated by reaching the closing

brace of its body. As detailed in an earlier section, Spin will produce an error if there is an

23

AFIT/GCS/ENG/OOM-12

execution sequence that visits infinitely often an accept state. Combining never claims and

accept states, Spin can detect illegal infinite (cyclic) behavior by labeling a block of statements

in a never claim with an accept label, creating an accept state, and then checking the selected

statements an infinite number of times to see if Spin can enter the blocked accept state.

2.5.6.5 Example claim

If p and q are two boolean variables and the temporal claim is made that "along every

computation, each system state in which p is true is eventually followed by the case when q is

true," then the following never claim verifies whether there are any violations of the temporal

claim.

never
{

do
:: p -> break
:: skip

od;
accept:
do

:: !q
od

}

The first do loop terminates only when the variable p becomes true. According to our

claim, the variable q should eventually become true. The second do loop (hence the never

claim) will never terminate and cannot be broken out of. The never claim continuously checks

the system state to see if q has become true. The never claim either eventually blocks because

the variable q becomes true (which is the desired behavior) and the accept state cannot be

entered, or Spin continuously enters the accept state because q is not true. If Spin can enter the

accept state without ever being blocked, this is an error. Because Spin guarantees an exhaustive

24

AFIT/GCS/ENG/OOM-12

search of the system state space, if there is any violation of our claim, Spin will detect it. If the

never claim ends in the accept state, then an error has been detected.

2.5.7 Summary

Each of the formal languages covered can accurately portray a system and describe the

system's behavior. The difference in the languages is the ease of use and understandability of the

language, as well as the automated tools that support the language. Promela is a modeling

language, and thus resembles a programming language rather than a formal language. This

feature makes Promela easier to understand for most computer scientists.

All three of the automated verification tools covered here can verify a system is deadlock

free. They can also verify safety properties and liveliness properties. The basic difference in the

systems lies in their input language. Therefore, the choice of which system to use depends

primarily on the choice of design language.

25

AHT/GCS/ENG/OOM-12

///. Methodology

3.1 Introduction

Currently, the only way to formally verify the agent conversations designed in a multi-

agent environment with an automated tool is for someone to translate, by hand, the design into a

formal language and then run the verifier on this formal representation. Most people believe

formal methods are too difficult to understand and use in this manner (Hinchey, 1999). The

challenge then is to automatically generate the formal representation of a conversation from the

design in the multi-agent development environment. Then, using an automated tool, verify this

representation is free from undesirable communication properties such as deadlock.

As stated in Section 1.3, the goal of this research is to develop a formal methodology and

technique to verify that the communication protocols defined in a multi-agent environment are

valid. This chapter outlines steps that can be used to apply this research to any multi-agent

development environment. Section 3.2 explains how an agent conversation is modeled with a

state transition diagram. Section 3.3 explains how the state transition diagram can then be

converted into a set of state tables. The task of creating a formal representation of the state

transition diagram from the state table is described in Section 3.4. The process of verifying the

formal representation with an automated tool is detailed in Section 3.5. Figure 3 is a top-level

view of the overall process.

3.2 Modeling Agent Conversations with State Transition Diagrams

According to Roger Pressman,

The state transition diagram indicates how the system behaves as a
consequence of external events. To accomplish this, the state transition
diagram represents the various modes of behavior (called states) of the

26

AFIT/GCS/ENG/OOM-12

system and the manner in which transitions are made from state to state.
(Pressman, 1997)

Model Conversation
With A

State Transition Diagram

I
Convert State Transition

Diagram To A
State Table

I
Create Formal

Representation From
State Table

I
Verify Formal

Representation With An
Automated Tool

Figure 3: Top Level View of Methodology

An agent conversation consists of an initiator side and a responder side. Both sides of

the conversation move through various states by sending and receiving messages. Eventually,

both sides of the conversation should end up in their respective "end" states and the conversation

will be completed. It is the state transition diagram that allows us to visualize the various states a

conversation goes through and it records the events that cause the conversation to move from

state to state.

As shown in Chapter 2, Figure 4 illustrates one side of a conversation and Figure 5

illustrates the complimentary side of the conversation. The two sides make up one complete

27

AFIT/GCS/ENG/OOM-12

conversation, which may be part of a much larger system (or set) of conversations. The

conversation is shown here again for easy reference.

The responder side of the Sendlnfo conversation has four states and the transitions

complement the transitions in the initiator side of the conversation. The next step in the modeling

process is to convert the above state transition diagrams into a state table.

Sendlnfo: initiator
failure-transmission *send(information)

*send(information) wait

"V

acknowledge

Figure 4: Initiator Half of Conversation Sendlnfo

Sendlnfo: responder

send(informat sn)

[invalide ata)^ailure»ransmission

send(information)

do: validate(information)

[validdataJN ^knowledge

m
Figure 5: Responder Half of Conversation Sendlnfo

3.3 Converting a State Transition Diagram to a State Table

A state table is a textual representation of a graphical state transition diagram. The

advantage a state table has over a state transition diagram is that it can be parsed easily. This

feature is critical when Promela source code has to be generated.

28

AFIT/GCS/ENG/OOM-12

The state table is built from the transition labels on the transition arrows of a state

transition diagram. The state table is simply an ordering of all the transitions possible in a state

transition diagram. The state table is ordered so all transitions pertaining to a particular state are

together. The state table also must begin with the Start state and end with the End state. Normal

state tables do not have these requirements, but they are necessary here for automatically building

Promela source code. The format of the state table should mirror that of the transition labels in a

state transition diagram. However, each entry in the state table needs to know the state the

transition is coming from and the state it is going to, even if it is the same state. One solution to

this problem is to add to the beginning of the state table entry the current state of the transition

while adding to the end of the entry the next state the transition will enter. The different fields of

the state table entry should be separated by a semicolon or some other character for ease in

parsing the table later. Figure 6 illustrates a state table using the Sendlnfo conversation in Figures

4 and 5. In this state table, a name is given to both halves of the conversation and this name

inserted at the beginning of each line. This naming convention will be used to create Promela

code later on.

SendlnfoResponder;startState;send;null;null;validationState
SendlnfoResponder;validationState;null;invalidData;

failureTransmission;waitstäte
SendlnfoResponder;validationState;nul1;validData; acknowledge;

endState
SendlnfoResponder;waitState;send;null;null;validationState
SendlnfoResponder;endState;null;nul1;null;null
Sendlnfolnitiator;startState;null;null;send;waitState
SendInfoInitiator;waitState;failureTransmission;null;send;waitState
Sendlnfolnitiator;waitState;acknowledge;null; null;endState
Sendlnfolnitiator;endState;null;null;null;null

Figure 6: State Table of Conversation Sendlnfo

Each line of the state table contains the following information: process name (consisting

of the conversation name and the participant's name), current state, received message, guard

29

AFIT/GCS/ENG/OOM-12

condition, transmitted message, and next state. Each entry in the state table must be unique to

prevent duplication of Promela code.

The state table provides a textual representation of the state transition diagram. The state

table is now used to build a formal representation of the state transition diagram by converting the

state table into Promela source code. The following section demonstrates how Promela is used to

model an agent's conversation.

3.4 Creating Promela Code from a State Table

Modeling a conversation with Promela is not as difficult as one would think. However,

creating the Promela code using as input a state table requires a method of parsing the state table

and automatically creating the source code. In this section, the Sendlnfo conversation is modeled.

Each Promela statement will be described as it is used.

3.4.1 Message Type Declarations

The first line of Promela code needed is the message type declarations. Promela has a

type called mtype that allows a programmer to declare constants without assigning values to the

constants. The declaration looks like this:

mtype={failureTransmission,send,invalidData,validData,acknowledge};

Promela does not allow hyphens in declarations, thus the word failureTransmission

instead of failure-transmission. These values are found by searching through the state

table and creating a vector of messages by examining the received message, guard condition, and

transmit message fields.

3.4.2 Channel Declarations

The next declaration required is the channel the messages will use. Promela allows for

synchronous or asynchronous transmissions. The channel declaration looks like this.

30

AFTC7GCS/ENG/00M-12

chan busl = [1] of {mtype};

This declaration states that a variable busl is of the type chan, and it can hold one

message in its buffer. Only messages of type mtype can be sent on this channel. If the [1] was

replaced with [0], then no messages could be buffered and all messages would have to be taken

off the channel (received) before another message could be placed on the channel (transmitted).

The channel declarations are determined by the number of conversations in the state table. If

only one conversation is in the state table, then only one channel declaration must be made.

However, if for instance three conversations are contained in the state table, then three channels

must be used to prevent messages from interfering with each other.

3.4.3 Process Declarations (Proctypes)

The next step is to create processes that emulate each side of the conversation. Promela

has a construct called a proctype that models each half of a conversation. Each process

contains all of the states for one side of the conversation. The processes are designed to begin in

the startstate and end in the endstate, while moving from states only if explicitly directed

to do so. Figure 7 shows the proctype declaration for the responder side of the Sendlnfo

conversation, while Figure 8 shows the initiator side of the same conversation.

The keyword proctype declares a procedure. The state labels all end with a colon. The

do. . od loops trap the flow of control inside their respective states. Two ways to exit a do. . od

loop is with a goto statement or a break statement. The goto transfers control to another state

while the break just exits the loop and falls through into the next state. For obvious reasons, it is

unacceptable to fall into another state unless explicitly directed to do so. An exclamation point

(!) after the channel variable busl signifies the message send has been placed on the channel.

The arrow (->) is a statement separator and serves as an implication symbol. If the statement

31

AFIT/GCS/ENG/OOM-12

before the arrow is executed then the statement after the arrow is also executed. The semicolon

(;) is also a statement separator but carries no implications. Finally, a question mark (?) after the

channel variable busl signifies the message following the question mark is taken off of the

channel via a receive action.

proctype SendlnfoResponder()

{
progressStartState:

do
:: busl?send -> goto progressvalidationState
od;

progressvalidationState:
do
:: invalidData->bus!failureTransmission;goto

progresswaitState
:: validData -> busl!acknowledge; goto progressendState

od;
progresswaitState:

do
:: busl?send -> goto progressvalidationState
od;

progressEndState:
do
:: break
od;

}

Figure 7: Process SendlnfoResponder

proctype Sendlnfolnitiator()

{
progressStartState:

do
:: busl!send -> goto progresswaitState
od;

progresswaitState:
do
:: busl?failureTransmission-> buslsend; goto

progresswaitState
:: busl?acknowledge -> goto progressendState
od;

progressEndState:
do
:: break
od;

}

Figure 8: Process Sendlnfolnitiator

32

AFTT/GCS/ENG/OOM-12

3.4.4 Process Declarations (Init)

Now that the processes representing the two halves of the conversation have been

modeled, a process needs to be created that will start the conversation processes running. This

process is called an init process. Figure 9 shows what the init process looks like for the

Sendlnfo conversation.

init
{ atomic

{
run SendlnfoResponder();
run Sendlnfolnitiator()

}
}

Figure 9: Init Process for Sendlnfo Conversation

The keyword atomic mandates all statements enclosed within its brackets will be

executed without interruption by external processes. The keyword run starts the processes

running and these processes are run in parallel. Figure 10 shows the complete Promela code for

the Sendlnfo conversation.

3.4.5 Verifying Message Sequences

Sequence diagrams (Rational, 1997) are beneficial for real-time specifications and for

complex scenarios. They show the explicit sequence of messages between agents and can exist in

a generic form (all the possible sequences of messages) or an instance form (one actual sequence

consistent with the generic form). Sequence diagrams show the big picture in the grand scheme

of agent conversations.

Listing desired messages between conversations in a specified order creates a message

sequence. Sequence diagrams represent interactions among agents within a system to achieve a

desired operation or result. A graphical representation of a message sequence is called a message

sequence chart (Rational, 1997). Figure 11 shows a valid message sequence chart encompassing

33

AFIT/GCS/ENG/00M-12

two conversations (Sendlnfo and CollectData) between three agents (Commander, Mission Cntrl,

and Data Collection). Not all of the messages that could be sent in these conversations need be

included in the message sequence chart.

mtype = {failureTransmission, send, invalidData, validData,
acknowledge};

chan busl = [1] of {mtype};
proctype SendlnfoResponder()
{
progressStartState:

do
:: busl?send -> goto progressvalidationState

od;
progressvalidationState:

do
:: invalidData -> bus!failureTransmission; goto

progresswaitState
:: validData -> busl!acknowledge; goto progressEndState

od;
progresswaitState:

do
:: busl?send -> goto progressvalidationState

od;
progressEndState:

do
:: break
od;

}
proctype Sendlnfolnitiator()

{
progressStartState:

do
:: busl!send -> goto progresswaitState
od;

progresswaitState:
do
:: busl?failureTransmission -> buslsend; goto

progresswaitState
:: busl?acknowledge -> goto progressendState
od;

progressEndState:
do
:: break
od;}

init
{ atomic

{ run SendlnfoResponder();run Sendlnfolnitiator() }}

Figure 10: Complete Promela Code for Sendlnfo Conversation

34

AFIT/GCS/ENG/OOM-12

Commander Mission Cntrl

send

send

Data Collection

coUectData

return

Figure 11: Message Sequence Chart

Message sequences are converted to a table similar to a state table as shown in Figure 12.

The format of the message sequence table is Conversation Name; Conversation From

Participant; Conversation To Participant; Message. When checking for a message sequence the

sequence is defined in a Promela never claim and checked for its existence. A never claim is a

special type of process that is optional and, if it exists, is used to detect undesirable behavior. If a

message sequence defined in a never claim is found, Spin will generate an error. Of course, this

is not really an error because we want to verify the sequence exists and the error condition has

confirmed the sequence does indeed exist. Figure 13 is the never claim for the message

sequence table of Figure 12.

Sendlnfo;Responder;Initiator;send
CoUectData; Initiator ;Responder;collectData
CoUectData; Responder; Initiator; return
Sendlnfo;Initiator;Responder;send

Figure 12: Message Sequence Table

A key difference in the modeling of a message sequence and a conversation is the way

message events are detected. In a conversation, the channel that messages are transmitted on is

constantly monitored and messages must be placed on the channel and taken off the channel in a

predetermined order. In a message sequence, the channel is monitored but only desired messages

are detected.

35

AFIT/GCS/ENG/00M-12

Many messages may be placed on the channel and taken off the channel before a desired

message is detected as part of a particular sequence. Modeling sequences in this fashion provides

great flexibility in detecting message sequences that span multiple conversations.

never

{
StateO:

do
:: Sendlnfo?[send] -> goto Statel
:: skip
od;

Statel:
do
:: CollectData?[collectData] -> goto State2
:: skip
od;

State2:
do
:: CollectData?[return] -> goto State3
:: skip
od;

State3:
do
:: SendRawIntel?[send] -> goto State4
:: skip
od;

State4:
do
:: Sendlnfo?[send] -> goto accept
:: skip
od;

accept:
skip

}

Figure 13: Never Claim for Message Sequence Verification

The completed Promela source code is now saved and will be used as input for the

verification tool Spin. The verification of the Sendlnfo conversation is covered in the next

section.

36

AFIT/GCS/ENG/OOM-12

3.5 Verifying a Communication Protocol Using Spin

There are three steps in running Spin: 1) Compile the source code, 2) Generate the

analyzer files, and 3) Execute the analyzer.

3.5.1 Compile the Source Code

Spin is invoked by passing it the file name of our Promela code. This command looks as

follows:

redir -o error spin -a verify

The redir -o error portion of the above command uses a utility provided by the C

compiler that will redirect the output of the spin command to a file called error. The -a

parameter generates a protocol specific analyzer. Spin's output is a set of C files, named pan

(protocol analyzer).

3.5.2 Generate the Analyzer Files

The second step in running Spin is to compile the pan files with a C compiler to produce

the analyzer (pan. exe), which is then executed to perform an analysis of the protocol. The

command required to compile the pan files is as follows:

gcc -DEBITSTATE -DSAFETY -o pan pan.c

The -o parameter guarantees an exhaustive state space search for errors. The -

DEBITSTATE parameter uses a memory efficient bit state space method to prevent exhausting the

memory available on some machines. The -DSAFETY parameter decreases the overhead

associated with liveness properties when only checking for safety properties. In this case, the

check is for deadlock, which is a safety property.

37

AFIT/GCS/ENG/OOM-12

If checking for non-progress states, a different command must be used. It is not possible

for Spin to check for both deadlocks and non-progress states at the same time. The command

needed is as follows:

gcc -DNP -DBITSTATE -o pan2 pan.c

In this command, the -DNP parameter directs Spin to check for non-progress cycles

instead of deadlocks.

There is one more command that can be used to analyze a conversation. If a never

claim is used in the model, then the -DSAFETY parameter cannot be invoked. This is because a

never claim can incorporate more than just safety properties. It is possible to check for a

message sequence with Promela/Spin using a never claim. Figure 13 is a message sequence

trace that contains the message sequence of Figure 11. The command that must be used when a

conversation is modeled this way is as follows:

gcc -DEBITSTATE -o pan pan.c

Notice that the command is just like the command to check for deadlocks, but without the

-DSAFETY parameter.

3.5.3 Execute the Analyzer

The third step in running Spin is to execute the analyzer. The pan files are compiled into

an executable file called pan.exe. The pan.exe file is the analyzer that when executed

analyzes the compiled protocol. The command to execute the analyzer is as follows:

redir -o output.txt pan.exe

This is the command to use when checking for deadlocks. When running the pan. exe

file, a trace file (verify. trail) is created if an error is found in the protocol. This trace file

38

AFIT/GCS/ENG/OOM-12

can then be examined by Spin to pinpoint the location of the error. The command to generate a

sequence trace based on the trail file is as follows:

redir -o trace.txt spin -t -c verify

proc 0 = :init:
proc 1 = SendlnfoResponder
proc 2 = Sendlnfolnitiator
proc 3 = CollectDatalnitiator
proc 4 = CollectBtaResponder
proc 5 = CollectDatalnitiator
proc 6 = CollectDataResponder
proc 7 = SendRawIntelResponder
proc 8 = SendRawIntellnitiator
proc 9 = SendlnfoResponder
proc 10 = Sendlnfolnitiator
q\p 0123456789 10

1 Sendlnfo!send
1 SendInfo?send
1 Sendlnfo! failureTransmission
1 SendInfo?failureTransmission
1 Sendlnfo!send
2 SendRawIntel!send
1 Sendlnfo?send
1 Sendlnfo!failureTransmission
1 SendInfo?failureTransmission
2 SendRawIntel?send
1 Sendlnfo!send
1 Sendlnfo?send
1 Sendlnfo!failureTransmission
2 SendRawIntel!failureTransmission
1 SendInfo?failureTransmission
1 Sendlnfo!sfen
1 SendInfo?send
2 SendRawIntel?failureTransmission
1 Sendlnfo!failureTransmission
1 Sendffm?failureTransmission
1 Sendlnfo!send
1 SendInfo?send
1 Sendlnfo!acknowledge
1 Selldfo? acknowledge
2 SendRawIntel!send
2 SendRawIntel?send
2 SendRawIntel!failureTransmission
3 CollectDatalcollectData
2 SendRawIntel?failureTransmission
2 SendRawIntel!send
2 SendRawIntel?send
2 SendRawIntel!failureTransmission
3 CollectData?collectData
2 SendRawIntel?failureTransmission
2 SendRawIntel!send
2 SendRawIntel?send
3 ColelctData! col lectionFai lure
2 SendRawIntel!failureTransmission
2 SendRawIntel?failureTransmission
2 SendRawIntel! send
2 SendRawIntel?send
3 CollectData?collectionFailure
2 SendRawIntel[failureTransmission
2 SendRawIntel?failureTransmission
2 SendRawIntel!send

Figure 13: Message Trace of Message Sequence Verification

39

AFrr/GCS/ENG/OOM-12

The -t parameter directs Spin to follow the simulation trail in the tail file

(verify, trail). The -c parameter tells Spin to put the simulation output in columnated order.

If checking for non-progress errors, the command to execute the analyzer is as follows:

redir -o newpan2.txt pan2.exe -1

In this command, the -1 parameter tells the analyzer to find non-progress cycles. If

checking for a message sequence with a never claim that contains an accept state, then a different

command must be used. The command is as follows:

redir -o newpan.txt pan.exe -a

In this command, the -a parameter tells Spin to find acceptance cycles, which would

have been declared inside the never claim. Note that a never claim can be declared without an

acceptance state. However, Spin appears to find an error faster if an acceptance state is

used.

3.6 Interpreting Results

The only thing left to do is display the output. txt file for any error messages, and if

there were any errors, the trace. txt file for the detailed trace. The output will list any errors as

well as the quantity of errors. Figure 14 shows an example of the Spin output with no errors.

The messages generated by Spin show that a full statespace search was performed for

assertion violations and invalid end states. The search reached a depth of 12 levels and found

no errors. This conversation model contained three processes, and none of them had states that

were unreachable during the simulations.

If errors were detected during the verification process, text files are created that contain

the detailed error information. If a deadlock condition occurs, Spin generates an invalid end-state

error for each state that is deadlocked. If a state is never entered into, then Spin generates a non-

40

AFTT/GCS/ENG/OOM-12

progress state error message. Finally, if a message sequence is not detected and an error

generated, then the message sequence does not exist and a true error is found. Figure 15 shows

the output generated by Spin when a deadlock condition is inserted into the Sendlnfo conversation

by changing one of the transmitted messages to a received message.

(Spin Version 3.2.4 — 10 January 1999)
+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 28 byte, depth reached 12, errors: 0
12 states, stored
1 states, matched

13 transitions (= stored+matched)
1 atomic steps

hash conflicts: 0 (resolved)
(max size 2A18 states)
1.493 memory usage (Mbyte)
unreached in proctype SendlnfoResponder

(0 of 24 states)
unreached in proctype Sendlnfolnitiator

(0 of 18 states)
unreached in proctype :init:

(0 of 4 states)

Figure 14: Spin Output of Sendlnfo Conversation

In this output, only one error is detected. However, it was an invalid end-state caused by

a deadlocked state in the conversation. Spin generated a file called verify. trail that can be

used to recreate the message trace that caused the deadlock condition. This is very useful in

troubleshooting the condition that caused the error.

Figure 16 is the output generated by Spin when checking for non-progress states. Non-

progress states are detected if any state labeled with the keyword progress is not entered into.

This output did not detect any errors, but did note that two states in the procedure

SendlnfoResponder and two states in Sendlnfolnitiator were not reached. This error

41

AHT/GCS/ENG/OOM-12

was caused because the conversation was deadlocked, and thus the conversation could not

proceed to these states and complete the conversation.

pan: invalid endstate (at depth 5)
pan: wrote verify.trail
(Spin Version 3.2.4 — 10 January 1999)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates +

State-vector 24 byte, depth reached 8, errors: 1
9 states, stored
1 states, matched

10 transitions (= stored+matched)
1 atomic steps

hash conflicts: 0 (resolved)
(max size 2A18 states)

1.493 memory usage (Mbyte)

Figure 15: Spin Output of Detected Deadlock

3.7 Summary

This chapter described the methodology used to verify agent conversations in a multi-

agent system. The process began by modeling the conversations using a state transition diagram.

The state transition diagram was then converted into a state table where it was parsed into the

Promela modeling language. Finally, Spin was run against the Promela code and deadlock and

non-progress errors where checked for. Also demonstrated was how Promela and Spin could be

used to verify message sequences by declaring a never claim and checking for the existence of

the desired message sequence.

42

AFIT/GCS/ENG/OOM-12

(Spin Version 3.2.4 -- 10 January 1999)
+ Partial Order Reduction

Bit statespace search for:
never-claim +
assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid endstates - (disabled by never-claim)

State-vector 32 byte, depth reached 16, errors: 0
10 states, stored
2 states, matched

12 transitions (= stored+matched)
2 atomic steps

hash factor: 381300 (expected coverage: >= 99.9% on avg.)
(max size 2A22 states)

3.066 memory usage (Mbyte)

unreached in proctype SendlnfoResponder
line 21, state 21, "goto"
line 24, state 24, "-end-"
(2 of 24 states)

unreached in proctype Sendlnfolnitiator
line 38, state 15, "goto"
line 41, state 18, "-end-"
(2 of 18 states)

unreached in proctype :init:
(0 of 4 states)

Figure 16: Spin Output of Detected Non-progress State

43

AFIT/GCS/ENG/00M-12

IV. Implementation

4.1 Introduction

Chapter 3 described how this research could be applied to a generic multi-agent

development environment. This chapter outlines the steps taken to implement the generic

methodology in AFTT's agentTool multi-agent development environment. Section 4.2 provides

an overview of how multiple conversations are verified using agentTool. Section 4.3 steps

through three examples of how to verify multiple conversations. The first example will not

contain any errors. The second example will contain a deadlock condition and will contain non-

progress states (states that are not entered into). The third example will demonstrate how a

message sequence is verified. Finally, Section 4.4 gives an analysis of the types of errors that are

detected and reported by agentTool, and perhaps more importantly, those errors that are not

detected and reported.

4.2 Verification Overview

In agentTool, a conversation takes place between two agents. Therefore, the first step in

verifying a conversation is to create two agents and establish a conversation between them. After

the conversation is established, the two sides of the conversation must be defined. The agentTool

environment automatically creates a start state and an end state for each side of the

conversation. All the conversation designer must do is fill in the required states and transitions

for each side of the conversation.

The conversation definition process is repeated until all necessary conversations are

completed. The verification process is invoked by clicking on the Command pull down menu and

44

AFIT/GCS/ENG/OOM-12

choosing the Verify Conversations option. Figure 17 is a Data Flow Diagram (DFD) of the

entire verification process.

GriphkaJ
Opcntor Sute

AadData /
 —~wc

Define
wnrersation

\ Diafraw^

Hirh&ttited
Slates and
Tranntiooi / '«»•*

*—— (Feedback

Figure 17: Verification Data Flow Diagram

The next section provides details of each process listed in Figure 17. After the

conversations have been verified, feedback is provided to the user by means of a text window that

contains useful and meaningful messages while highlighting states and transitions on the state

transition diagrams where errors have been detected. As often happens with source code and

compilers, a single error may generate many error indicators. For this reason, many states and

transitions may be highlighted when only one or two is actually in error.

4.3 System Design

The conversation verification subsystem of agentTool was implemented using Java, text

files, and batch commands. Each step of Figure 17 is detailed below to demonstrate how the step

was actually implemented.

4.3.1 Define Conversations

Conversations are designed in agentTool using state transition diagrams. The diagrams

are built using graphical tools. Conversation states and transitions between states have properties

associated with them that are defined by the system designer. This part of the agentTool research

effort is documented in Wood's Thesis (Wood, 2000).

45

AFIT/GCS/ENG/OOM-12

4.3.2 Build Conversation State Table

The state transition diagram must be converted into a state table before automatically

generating Promela source code. Wood's thesis addresses how the values for each state transition

are derived and a state table created. Each entry in the state table contains tiieconversation name,

the participant, the current state, the received message (if it exists), the guard condition (if it

exists), the transmitted message (if it exists), and the next state. Every transition in the state

transition diagram is mapped to an entry in the state table. The state table is actually a vector of

transitions that can be analyzed to build the Promela source code.

It is important the state table be ordered on conversation states so that all of a

conversation's information is contiguous (sequential without interruption). Therefore, once a

state table has been created it is sorted so all of a given state's transitions are together in the table.

4.3.3 Build Promela Code

Chapter 3 explains the general process of automatically building Promela source code

from a state table. The process takes five steps: 1) declare mtype variables, 2) declare

channels, 3) build proctypes, 4) build init procedure, and 5) build never claim.

The Promela source code is saved in a text file. Before declarations can be made, the text

file must be created and opened. The name of the text file is simply Goverif y.

4.3.3.1 Declare mtype Variables

Received messages, guard conditions, and transmitted messages all must be declared as

mtype variables. To find these variables, the state table vector is searched one transition at a

time and appropriate variable names added to a new mtype vector. Every received message,

guard condition, and transmitted message is compared to the variables in the mtype vector. If the

variable already exists in the vector, it is passed over. However, if it does not exist in the vector,

46

AFIT/GCS/ENG/OOM-12

it is added. After one compete pass through the state table, the mtype vector contains a list of the

mtype variables with no duplicates.

The mtype declarations are the first entries in the Promela source code. The text string

mtype = { is printed along with the contents of the mtype vector delimited by commas. After

the mtype vector has been printed, the declaration is completed by printing}; and starting a new

line of the source code.

4.3.3.2 Declare Channels

Channels are the communication lines between two halves of a conversation. Therefore,

a channel exists for every conversation in the state table. The channel declarations are made by

first printing the text string chan. Then the state table is searched sequentially and every

conversation name printed, comma delimited. The declaration is completed by printing = [1]

of {mtype}; and starting a new line of source code.

4.3.3.3 Build Proctypes

A proctype declaration must be made for each side of a conversation. The state table is

ordered so that all the transitions for a conversation's participant are together. The first

transitions are those from the start state and the last entry for each participant in the state table is

the end state transition.

The state table vector is read sequentially and only one pass through the vector is

required to create all the proctypes. For each proctype declaration, the text proctype is

printed followed by the conversation name concatenated with the participant's name. This

technique creates a unique proctype name for each side of every conversation. The initial line

of the declaration is finished with the text () and an opening brace printed on a new line. Each

state in the proctype is declared by printing the text progress followed by the state name and

47

AFIT/GCS/ENG/OOM-12

finished with a colon. The next line of the state declaration contains the textdo, which begins a

do loop. Every line of text within the do loop contains the text :: followed by the proper

formatting of the transition. After all the transitions for a given state are printed, thedo loop is

terminated by printing the text od;. After all the states have been printed, the proctype

declaration is completed by printing a closing brace. This process repeats until allproctypes

have been generated.

4.3.3.4 Build init Procedure

The init procedure is declared by printing the text init followed by an opening brace

on a new line. The key word atomic is then printed followed by another opening brace on a new

line. The state table is then read sequentially and a line printed for each conversation half (two

entries per conversation). Each line contains the keyword run followed by the conversation

name concatenated with the participant name and ended with parentheses. Each run statement

must be separated by a semicolon. After all the run statements are written, two closing braces,

each on its own line, must be printed.

The init procedure is the last part of the Promela source code that is created unless

checking for a valid message sequence. Then, in addition to the above procedures, a never

claim must be declared.

4.3.3.5 Build Never Claim

A never claim follows the init procedure. It is declared by first printing the keyword

never followed by an opening brace on a new line. The never claim is built by reading a

message sequence table. There must be a state in the never claim for each entry in the message

sequence table. The states are declared by first labeling the state with the text State and

appending to it an integer beginning with 0 and incrementing the integer by 1 for every new state

48

AFIT/GCS/ENG/OOM-12

created. Each state label must end with a colon. Each state is made up of ado loop that contains

two entries.

The first entry is the channel name the message is expected to traverse appended with a

question mark to signify receiving a message on that channel. Appended to the channel name and

question mark is the message name enclosed in brackets. This method of detecting a message on

a channel allows unwanted messages to pass until the desired message is detected. An arrow is

appended to the bracketed message and a goto statement that directs the conversation to the

following state if the correct message is detected.

The second entry is a skip statement that keeps the never claim in the current state until

the desired message is detected. The state declaration is finished by ending the do loop with the

textod;.

After all the states have been printed, an accept state must be declared. The accept

state traps the never claim until all the conversations have terminated. The accept state is

created by printing the keyword accept: followed by the keyword skip on a separate line. The

never claim is then completed by printing a closing brace. The completed Promela source code

is now saved in the text file verify for use with Spin.

4.3.4 Check for Valid Conversations

When Spin is started, the Promela source code is first checked for syntactical errors.

Syntactical errors such as invalid characters in variable names will cause Spin to generate an error

file that contains the error messages. If after running Spin the error file contains messages, they

are displayed in the message window for the user to analyze. The command to run Spin against

the Promela source code created above is:

Spin.exe -a verify

49

AFIT/GCS/ENG/OOM-12

The -a parameter tells Spin to create an analyzer specific to the protocols specified in the

file verify. Syntactical errors must be corrected before the conversations can be verified. If no

error messages are reported, Spin creates the appropriate files that can be used to generate an

executable analyzer.

4.3.5 Check for Deadlock

Once the analyzer files have been created, an executable analyzer file must be created.

This is accomplished by compiling one of the newly generated files (pan. c) into an executable

file (pan. exe). The command required is:

gcc.exe -DEBITSTATE -DSAFETY -o pan pan.c

The gcc command invokes a standard C compiler. The -DEBITSTATE parameter uses a

memory efficient bit state space method to prevent exhausting the memory available on some

machines. The -DSAFETY parameter decreases the overhead associated with liveness properties

when only checking for safety properties. The -o parameter guarantees an exhaustive state space

search for errors.

Now pan. exe can be executed and the protocol specific files analyzed. The command

required for this is simply:

pan.exe

Spin displays the results of the analysis by default to the computer screen. However, the

output can be redirected to a text file by using a C utility, redir. The command to accomplish

this task is:

redir -o output.txt pan.exe

The -o parameter is used by the redir command and states the output should be

directed to the file output. txt.

50

AFIT/GCS/ENG/OOM-12

4.3.6 Check for Non-Progress

The check for non-progress is similar to that for deadlock. However, special parameters

must be used because Spin cannot check for both deadlock and non-progress with the same

command. The command required is:

gcc.exe -DNP -DEBITSTATE -o pan pan.c

In this command, the -DNP parameter directs Spin to check for non-progress cycles

instead of deadlocks. The newly created pan.exe must be executed to actually perform the

analysis, but the procedure is the same as in Section 4.3.5.

4.3.7 Check Valid Sequence

If checking for a valid message sequence, a slight modification to the deadlock check is

required. Since a never claim is declared when checking for valid message sequences, the check

cannot only be for safety properties. The check must now also include checking for liveness

properties associated with the never claim. The command required is:

gcc -DEBITSTATE -o pan pan.c

The command is exactly like the check for deadlocks except the -DSAFETY parameter is

missing and cannot be used. The newly created pan. exe file must be executed to analyze the

protocol specific files and generate the appropriate output.

4.3.8 Provide Feedback

Feedback is provided to the system designer through a text based message window and

through graphical highlighting of the state transition diagram. When executing thepan. exe file,

the output is redirected to a text file. The contents of the text file are then copied into the

message window enabling the system designer to see the results of the analysis. Sometimes the

Spin output is difficult to interpret for novice users, so the output is automatically parsed and

51

AFIT/GCS/ENG/OOM-12

states and transitions are highlighted to assist the user in locating errors. During the verification

process, a vector containing all known deadlock transitions and non-progress states is created and

used to highlight the state transition diagrams.

4.4 Examples

4.4.1 Conversation without Error

The first step in verifying conversations is to build the conversations. Figure 18 is an

image of agentTool showing a system with two agents and a conversation between them.

■ÄSÄffet'*).^

TU
%&ßsä

>£»
iCa*Tooli0.ti

At« «IM
Acnttdikd

SalKtDOTIATOR
S«lKtJU3P0HDER

AgeM2

Figure 18: Conversation between Agents

The only properties of the conversation a user can define from this screen is the name of

the conversation (Sendlnfo) and the direction of the conversation (who is the initiator and who is

the responder). By clicking on the conversation line, two tabs appear. One tab is to define the

state diagram for the initiator and one tab for the responder.

By clicking on one of the two tabs, a new window appears that automatically provides a

start and an end state for the conversation designer. It is assumed every conversation has a

start and an end state. In this window, designers add states and transitions to create a complete

state transition diagram. Figure 19 is an image of the initiator side of the Sendlnfo conversation.

52

AFIT/GCS/ENG/OOM-12

The complementary side of this state transition diagram is the responder side of the Sendlnfo

conversation and is shown in Figure 20.

SdKtDOTUTOR
StkaEISVOHDIX

CnmttaMM
StttMM
Addtac ttmcUm

friKt CUKRDTT SUd
i.ka HECT SU<

ImtteMU
Mdkc ImtJCB

sdMl CURRENT Sttft
nka HCCT SUta

ItuUsMM

s«n.oop
«•ndflnfoji

fc-^L'-i

Figure 19: Initiator Side of Sendlnfo Conversation

The Sendlnfo conversation is now completely specified and is ready to be verified. The

verification process is invoked by clicking on the Command pull down menu and choosing

Verify Conversations. A state table is created from the states and transitions of the state

transition diagram and this state table is used to create the Promela Code. Figure 21 is the

Promela Code created from this conversation.

The automated tool Spin is now invoked to check the syntax of the Promela code. If the

code is syntactically correct, Spin generates an analyzer to determine if protocol errors exist in the

conversation. The first check is for deadlocks. Spin determines if deadlocks exist by seeing if

either side of the conversation terminates while not having reached its end state. Spin calls this

kind of error an invalid end-state error. If the conversation is deadlocked, a message is displayed

in a text window that tells the user exactly where the deadlock occurred. The offending state

53

AFIT/GCS/ENG/OOM-12

transition is also highlighted on the graphical state transition diagram. The highlighting can only

be removed by re-verifying the conversation.

Figure 20: Responder Side of Sendlnfo Conversation

After the deadlock check is performed, the conversation is checked for livelock by

checking for states that are never entered. Spin calls this type of error a non-progress error

because the conversation has not made progress in these particular states. Again, if an error

condition exists, a message is displayed in the text window telling the user exactly where the non-

progress states are and the non-progress states are highlighted on the state transition diagrams.

They remain highlighted until the conversation is re-verified. If a deadlock condition is detected,

a trace file is created by Spin that allows a simulation be run that pinpoints the location of the

error. This message trace is also displayed in the text window to help the user to find the source

of the conversation errors. Figure 22 is the output messages displayed for the user when

verifying the Sendlnfo conversation.

Since there were no errors in this conversation, no error messages were displayed and no

states or transitions were highlighted. The next example will implement a conversation that has a

deadlock condition in it.

54

AFIT/GCS/ENG/OOM-12

mtype = {send, acknowledge, failureTransmission, invalidData,
validData };

chan Sendlnfo = [1] of {mtype};
proctype Sendlnfolnitiator()

{
progressStartState:

do
:: Sendlnfo!send -> goto progresswait
od;

progresswait:
do
:: SendInfo?acknowledge -> goto progressEndState
:: SendInfo?failureTransmission -> goto progressselfLoop
od;

progressselfLoop:
do
:: Sendlnfo!send -> goto progresswait
od;

progressEndState:
do
:: break
od;

}
proctype SendlnfoResponder()

{
progressStartState:

do
:: SendInfo?send -> goto progressvalidation
od;

progressvalidation:
do
:: invalidData -> Sendlnfo!failureTransmission; goto

progresswait
:: validData -> Sendlnfo!acknowledge; goto progressEndState
od;

progresswait:
do
:: SendInfo?send -> goto progressvalidation
od;

progressEndState:
do
:: break
od;}

init{
atomic
{

run Sendlnfolnitiator();
run SendlnfoResponder()

}
}

Figure 21: Promela Code of Sendlnfo Conversation

55

AFIT/GCS/ENG/OOM-12

!!!!!!!!!! OUTPUT OF SPIN ANALYSIS !!!!!!!!!!

Analysis Completed... Evaluating Analysis...

********** OUTPUT FROM DEADLOCK CHECK **********

CONVERSATION IS NOT DEADLOCKED!!!

********** OUTPUT FROM PROGRESS CHECK **********

CONVERSATION DOES NOT HAVE UNUSED STATES!!!

********** OUTPUT FROM SIMULATED RUN **********

No trace available

Figure 22: Output From Sendlnfo Verification Run

4.4.2 Conversation with Error

The conversations shown thus far are error free. However, agentTool provides excellent

user feedback when errors are detected. In order to demonstrate agentTool's error detecting and

reporting capability, a new conversation must be created between two agents. Figure 23 shows

the new conversation and agent added to the previous example.

ISTBTXJ

tjConv: ColiectOala
ä^^g-;^'

CMT*CO—«JBlUMH*« fctmX—tirOlintlfKlittp

«BM2

ka*t)

Figure 23: Two Conversations with Three Agents

The CollectData conversation must now be described. As before, there is an initiator

side and a responder side to the conversation. Figure 24 shows the initiator side of the

conversation while Figure 25 shows the responder side of the conversation.

56

AFIT/GCS/ENG/OOM-12

Figure 24: Initiator Side of CollectData Conversation

The initiator side of the CollectData conversation has an error in it. The transition from

the logFailure state that is labeled acknowledge is incorrect. As drawn, the transition is

waiting to receive an acknowledge message before transitioning to the end state. The transition

should be drawn so that it automatically sends an acknowledge message when in the wait state

and then immediately transitions to the end state. This incorrectly labeled transition will cause

the CollectData conversation to be deadlocked. Figure 26 is the Promela code for the collect data

conversation.

[Cony.ColttctData \W

kamt Oxrm [tMKCtueBM* WBpNr

colKiO«a<Kfjut, tocatMi)

I JcofcclkM (celKHonConi|>M*r*i

cthctt« ?-^C

SClQMW(t4S# \
[MnsMFafciel'c oWttonfi

Figure 25: Responder Side of CollectData Conversation

57

AFIT/GCS/ENG/00M-12

mtype - (validData, invalidData, failureTransmission, acknowledgoollectData, return,
collectionFailure, sensorFailure, movanä'ailure, collectionComplete);

chan CollectData - [11 of (mtype);

proctype CollectDatalnitiator()
{

progressStartState:
do
:: CollectData!collectData> goto progresswaiting
od;

progresswaiting:
do
:: CollectData?return-> goto progressvalidateData
:: CollectData?collectionFailure> goto progresslogFailure

od;
progressvalidateData

do
:: invalidData-> CollectData!failureTransmission; goto progresswaiting
:: validData-> CollectData!acknowledge; goto progressEndState
od;

progresslogFailure:
do
: : CollectData?acknowledge> goto progressEndStaat
od;

progressEndState:
do
:: break
od;

>

proctype CollectDataResponder()
<

progressStartState:
do
:: CollectData?collectDato> goto progresscollecting
od;

progresscollecting:
do

sensorFalure -> CollectData!collectionFailure; goto progresswait
movementFailure-> CollectData!collectionFailure; goto progresswait
collectlonComplete-> CollectData!return; goto progresscollectionComplete

od;
progresscollectionComplete

do
:: CollectData?acknowledge> goto progressEndState
:: CollectData?failureTransmissioö goto progressselfLoop
od;

progresswait:
do
:: CollectData?acknowledge> goto progressEndState
od;

progressselfLop:
do
:: CollectData!retur»> goto progresscollectionComplete
od;

progressEndState:
do
:: break
od;

I

init
{

atomic
(

run CollectDatalnitiator()
run CollectDataResponder!)

)
)

Figure 26: Promela Source Code for CollectData Conversation

When the user verifies these two conversations, a message window appears that gives the

status of the verification. As soon as the error is detected, the color of the text in the window

58

AFIT/GCS/ENG/OOM-12

changes to red. Since a deadlock condition was detected, a trace file is created and the message

sequence trace is displayed in the message window. Figure 27 shows the sequence trace

generated by the deadlock condition.

The two transitions that are deadlocked are also specified in the message window as well

as highlighted on the graphical state transition diagram. Figure 28 shows the highlighted

transition for one side of the deadlocked conversation.

This method of feedback provides an excellent means for a user to identify problems in

conversations. Appendix A shows the entire contents of the message window after verifying

these two conversations. Figure 29 shows the deadlock messages that are displayed in the

message window.

proc 0 = :init:
proc 1 = Sendlnfolnitiator
proc 2 = SendlnfoResponder
proc 3 = CollectDatalnitiator
proc 4 = CollectDataResponder
q\p 0 1 2 3 4

1 CollectDatalcollectData
1 CollectData?collectData
1 CollectDatalcollectionFailure
1 CollectData?collectionFailure
2 . Sendlnfolsend
2 . . SendInfo?send
2 . . Sendlnfo!acknowledge
2 . SendInfo?acknowledge

spin: trail ends after 16 steps

final state:

iprocesses: 5
16: proc 4 (CollectDataResponder) line 92 "verify" (state 27)
16: proc 3 (CollectDatalnitiator) line 65 "verify" (state 24)
16: proc 2 (SendlnfoResponder) line 46 "verify" (state 24)
<valid endstate>

16: proc 1 (Sendlnfolnitiator) line 25 "verify" (state 22)
<valid endstate>

16: proc 0 (:init:) line 114 "verify" (state 6) <valid
endstate>

5 processes created

Figure 27: Sequence Trace of CollectData Conversation

59

AFIT/GCS/ENG/OOM-12

tSyaNm.^4. Commantf^ 4 »««»PsSlSRlR

ii''•" ' '-iA*'»' j ••• "tiKraiihaMKHtflConyCoiieclOaia IggBBSS
JMS "•.- ™i#i;;.™^5M« ••—'' - ": v -^«creajgHMH
;i^_ • 1.¥*.-'7 •' •"...': v— i ill iMiiiiliHirMr '

^-«^JS«?"

AgMtDlagrsn I

«coi«cM)ata|*^nwr,

flnwMDa»al*mu»Tran«inl««ton

^1/ r' «tum<ital»>

»ItcttonFail ><<i*»on)

lofifa*»« 1

|MMData]* cknowMgt

lm^jjug(njimi)-p
acknowtwla«

Figure 28: Highlighted Transition from CollectData Conversation

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData
Participant Name = Responder
Current State = wait
State Transition = acknowledge

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData
Participant Name = Initiator
Current State = logFailure
State Transition = acknowledge

Figure 29: Deadlock Messages from Message Window

4.4.3 Message Sequence Verification

Once conversations are defined and verified, specific message sequences that traverse the

conversations can also be verified. Currently agentTool does not have the capability to

graphically represent message sequence charts. However, message sequence charts can be

represented via message sequence tables. Message sequence tables are very similar to state tables

except the state information is not required. All that is needed is theconversation the message is

a part of, the initiator and the responder of the message, and of course the message. Figure 30 is

a message sequence chart that can be verified using the above two conversations.

Figure 31 shows a message sequence table for the message sequence chart of Figure 30.

Before the message sequence can be verified, the conversations must be valid. Therefore, the

60

AFIT/GCS/ENG/OOM-12

CollectData conversation must be corrected by changing the received acknowledge message

from the logFailure state to a transmitted acknowledge message from thelogFailure state.

Commander MCEIement DitaCollection

Mnd(informaHon)

coIIectData(sensor,location)

rehirn(dita)

Figure 30: Message Sequence Chart for Sendlnfo and CollectData Conversations

SendInfo;Initiator;Responder;send
CollectData;Initiator;Responder;CollectData
CollectData;Responder;Initiator;return
Sendlnfo;Initiator;Responder;send

Figure 31: Message Sequence Table for Sendlnfo and CollectData Conversations

As described in Section 3.4.5, a message sequence is verified by making a never claim

that states the desired sequence can never occur. Spin then tries to detect the message sequence,

and if it finds the sequence a never claim violation is raised. This is a very efficient way to find

a message sequence using a state space analyzer. Appendix B shows the message window output

after searching for the message sequence in Figure 31. If the message sequence is valid, a trace

of the messages is provided to show how the sequence was found.

If the trace is not valid, Spin will not be able to find the never claim. Depending on the

machine's capabilities, verifying a message sequence does not exist may take quite a bit of time.

Figure 32 is a message sequence table that contains an invalid message sequence. The send

message in the CollectData conversation is invalid.

Sendlnfo;Initiator;Responder;send
CollectData;Initiator;Responder;send
CollectData,-Responder;Initiator;return
Sendlnfo;Initiator;Responder;send

Figure 32: Invalid Message Sequence Table

61

AFIT/GCS/ENG/OOM-12

The results of the invalid message sequence verification are displayed in the message

window and are referenced in Figure 33.

PLEASE STAND BY... TESTING MESSAGE SEQUENCE...

!!!!!!!!!! OUTPUT OF SPIN ANALYSIS !!!!!!!!!!

Analysis Completed... Evaluating Analysis...

********** OUTPUT FROM MESSAGE SEQUENCE CHECK **********

MESSAGE SEQUENCE IS INVALID!!!

********** SEQUENCE TRACE IS AS FOLLOWS **********

Message Sequence Invalid... - No trace available

********** TESTING COMPLETED **********

Figure 33: Invalid Message Sequence Output

Since the message sequence is invalid, no trace exists.

4.5 Analysis

Spin can check for many types of errors (Holzmann, 1997). However, agentTool does

not currently provide the capability to check for all of them. This section will discuss what can

and cannot currently be detected.

4.5.1 Errors Detected

4.5.1.1 Conversation Deadlocks

Conversation deadlocks are detected if there are no intervening factors such as hardware

failures or timing problems. This is accomplished by performing an exhaustive state space search

for deadlock conditions.

Figure 34 shows a conversation with a deadlocked condition. The transitions causing the

deadlock are highlighted. The transition on the initiator side of the conversation is incorrect in

62

AFIT/GCS/ENG/OOM-12

that it should be labeled as transmitting an acknowledge message instead of receiving an

acknowledge message.

Figure 34: Conversation with Deadlock Condition Detected

4.5.1.2 Unused States

Unused states are detected by checking for non-progress loops. If a state is not used, it is

not entered into and a non-progress error is generated.

Figure 35 shows a conversation with an unused state. The transition leading to the

unused state (State2) is never enabled. The transition is waiting for a received message (c) that

never is sent by the other side of the conversation. Therefore, the state can never be entered into

and is highlighted to assist the system designer.

^^^^^^M

Ä Sfe^.i'CtaT witty tt|Ki*< jConyCoryl

iy:.vpgTO-.J^?;,"-v:-J'-:■:-,';■ :>k&M3m£~ .■■ ■'■■■■ :: ""'•:*■■■.

m
Figure 35: Conversation with Unused State Detected

63

AFIT/GCS/ENG/OOM-12

4.5.1.3 Unused Messages

Unused messages are detected when they are not taken off the message channel, thereby

leaving messages on the buffer. Since messages placed on the channel must be matched by a

receiving process that takes them off the buffer, any unused messages will generate deadlock

errors. This might not actually be a deadlock condition, but the error raised will generate enough

information for the user to identify the source of the problem.

Figure 36 shows a conversation with an unused message. The transition from State 1 has

a transmitted message (b) that is not received by the other half of the conversation, thus causing a

blockage.

«111

w> [I Brat*hJ^Iiptri
f».

Figure 36: Conversation with Unused Message Detected

4.5.1.4 Mislabeled Transitions

Mislabeled transitions are detected when Spin is first run. If the syntax is incorrect, Spin

cannot compile the Promela code into the executable analyzer. Feedback is provided via a

message window when a syntax error occurs. Figure 37 shows the error messages generated

when an invalid character (?) is used in a transition.

64

AFIT/GCS/ENG/OOM-12

4.5.1.5 Inability to Create Required Sequences

Inability to create required sequences is detected using never claims. The desired

message sequence is modeled using a never claim, and if Spin does not generate a never claim

violation, the message sequence does not exist. Section 4.4.3 describes how an invalid message

sequence is detected and Figure 33 shows the messages after detecting the message sequence

does not exist.

spin: line 1 "verify", Error: syntax error saw 'operator: ?'
spin: line 9 "verify", Error: syntax error saw 'operator: ?'
spin: line 25 "verify", Error: undeclared variable: a saw ';'

near 'goto'
spin: line 29 "verify", Error: undeclared variable: b saw *; '

near 'goto'
spin: line 41 "verify", Error: proctype Convllnitiator not found

1 mtype = { ?a, a, b };
2
3 chan Convl = [0] of {mtype};
4
5 proctype Convllnitiator()
6 {
7 progressStartState:
8 do
9 : : ?a -> Convl!a; goto progressStatel
10 od;

Figure 37: Conversation Error Messages from Mislabeled Transition

4.5.2 Undetectable Errors

There are some communication errors that agentTool and Spin cannot currently detect.

These errors would be difficult for any automated system to detect; however, they are mentioned

here for completeness. There are plans to implement a syntax checker in agentTool that will

detect many of these errors such as state transition diagrams and guard conditions that are

incorrectly specified.

65

AFIT/GCS/ENG/OOM-12

4.5.2.1 Timing Errors

Timing errors caused by system properties cannot be detected by Spin. The

conversations may be valid, but if a system property causes a conversation to pause indefinitely,

the complementary conversation is deadlocked until the system property allows the conversation

to continue. In this scenario, the conversations are valid and have been verified. Nevertheless,

the overall system will not perform correctly.

Figure 38 shows a conversation that is valid and verified. However, one of the transitions

(initiator side from start state) contains a guard condition that, if it never becomes true, will

prevent the conversation from completing.

[Swtom Carenwad

j»»V4j'/!-:*i CMlllWlMwWltJCoiyCourt

iUlsiili'£

- 4puTMtv0.6

{I • •"M4frtin»''fv "*

®
Figure 38: Timing Error Not Detected in Conversation

4.5.2.2 Floating States

Floating states (states with no transitions) cannot be detected by agentTool and Spin

because they are not passed from agentTool via a state table to the verifier. If a state does not

have any transitions, it is not included in the state table and it is non-existent as far as the verifier

is concerned. Figure 39 shows a state diagram created with agentTool that contains a floating

state. The conversation is valid and the floating state is ignored.

66

AFIT/GCS/ENG/00M-12

4.5.2.3 Hardware Failures

Hardware failures that cause infinite conversation loops cannot be detected by agentTool

and Spin. The conversations are valid and have been verified, but if a sensor or other piece of

hardware continues to send the same message in the context of a valid conversation, the

conversation can become livelocked and the conversation cannot progress.

Figure 39: Floating State in Conversation

4.5.2.4 Guard Conditions

Guard conditions whose logic is specified incorrectly cannot be detected by agentTool

and Spin. If a guard condition is specified as part of a conversation, agentTool uses a figurative

representation of the guard condition to verify the conversation. If the guard condition consists of

an algebraic formula that is written incorrectly, Spin will never know. Figure 40 shows a

conversation with a guard condition specified incorrectly. The logic is wrong (A>5 && A<5).

4.5.2.5 Interacting Conversations Deadlock

Interacting conversations deadlock that results when two conversations are contending

for a common resource cannot be detected by agentTool and Spin. Even though the

conversations are valid, they can deadlock waiting for the same resource. Figure 41 shows a

conversation where both sides are waiting on the same file, but neither can have access to it.

67

AFIT/GCS/ENG/OOM-12

Figure 40: Incorrectly Specified Guard Condition in Conversation

Bfslsm Cemaanf

JUmtHaaHm
Mi

'*§m* P^an fcaoKCaiwI MM«

m

van»..

ftnimi)

<§>
Figure 41: Interacting Conversations Deadlock

4.6 Summary

This chapter has demonstrated how agent conversations can be verified in agentTool

using Promela and Spin. The input is via graphical state transition diagrams while the feedback

to the user is both graphical and textual. Many critical communication centric errors are detected

by agentTool and Spin. However, not all errors are detected by the automated tool so the final

burden rests on the user to ensure the newly created multi-agent system is tested sufficiently.

68

AFIT/GCS/ENG/OOM-12

V. Conclusions and Future Work

5.1 Introduction

The previous chapters of this thesis demonstrated how the conversations in a multi-agent

system could be automatically verified. This chapter summarizes the conclusions from the

previous chapters, and suggests areas of future work that will enhance and extend this research.

5.2 Conclusions

The previous chapters presented a methodology for automatically verifying multi-agent

conversations and a prototype implementing this methodology. The following sections present

conclusions obtained from this research.

5.2.1 Automatic Verification of Multi-agent Conversations

The automatic verification of conversations is a five step process that takes a graphical

representation of a conversation via a state transition diagram, converts the state transition

diagram to a state table, and creates a formal representation from the state table which can be

formally verified. Creation of the state transition diagrams and state tables are straightforward.

Creation of the formal representation requires in-depth knowledge of the formal language used.

Spin is an excellent modeling language because it is designed to represent communication

protocols. Other formal languages may be used, such as Communicating Sequential Processes or

Calculus of Communicating Systems, but these languages are very difficult to understand and

adapt to agent conversations.

This methodology is appropriate for verifying conversations in a closed agent system,

where agents communicate through known and predictable state-based conversations. This

methodology can also verify message sequences exist given a set of conversations. Figure 42 is a

69

AFIT/GCS/ENG/OOM-12

state transition diagram used to graphically define an agent's conversation. Figure 43 is a

message sequence chart used to illustrate the possible sequence of messages involving potentially

many agent conversations.

The following is a summary of the types of errors detected through this methodology:

• Conversation deadlocks are detected if there are no intervening factors such as

hardware failures or timing problems.

• Unused states are detected by checking for non-progress loops.

• Unused messages are detected when they are not taken off the message channel,

thereby leaving messages on the message buffer.

• Mislabeled transitions are detected when Spin is first run by executing a syntax

checker provided by Spin.

• The inability to create required sequences is detected using never claims.

SrffSi;ä{»a*t* «•»■* fC«wCnw<<

M > Statt)

gttfltffitol)

* >

m
Figure 42: State Transition Diagram

A few errors cannot be detected at this time using this methodology. The following is a

brief list summarizing undetectable errors:

• Timing errors caused by system properties will cause valid conversations to

hang-up.

70

AFIT/GCS/ENG/OOM-12

• Floating states (states with no transitions) cannot be detected because they are not

passed from the graphical interface to the verifier.

• Hardware failures that cause infinite loops cannot be detected.

• Guard conditions incorrectly specified cannot be detected because the verifier

does not evaluate guard conditions.

• Interacting conversations deadlock that results when two conversations are

contending for a common resource cannot be detected.

Commander MCElement DataCollection

sen d(in formation)

co llectDa ta(senso r,loci tio n)

return(data)

Figure 43: Message Sequence Chart

5.2.2 Implementation with agentTool

With agentTool, agent conversations are modeled using state transition diagrams. These

state transition diagrams are automatically converted into Promela source code and verified with

Spin. Feedback is provided to the system designer through text windows and graphical

highlighting of error conditions in the original state transition diagrams. Although agentTool is

still in development, it is a valuable tool for assisting the multi-agent system developer in

building complex systems.

5.3 Future Work

AgentTool verification can be made more complete by adding a syntax checker to catch

typographical and logical errors before attempting to verify conversations. Since agents designed

71

AFIT/GCS/ENG/OOM-12

with agentTool are state-based, their designs should also be able to be verified using Promela and

Spin.

5.3.1 Development of a Syntax Checker

Programming language compilers such as C and JAVA contain a syntax checker to

ensure the programs written in their language are specified correctly. The syntax of agent and

conversation specifications made with agentTool should also be evaluated by a checker to ensure

they are written correctly. A syntax checker for agentTool would ensure 1) invalid characters

(such as !?@#) are not used in conversation specifications, 2) guard conditions are logically

correct, and 3) "do" actions required in conversation states or transitions are implemented in the

agent's behavior. A syntax checker would also perform such tasks as ensuring at least one

message (transmit, receive, or both) is associated with a transition.

The Object Constraint Language (OCL), developed by Integrated Business Engineering

Language, IBM, is part of the Unified Modeling Language from version 1.1 on (Rational, 1997).

OCL is based on standard set theory and is used to specify invariants on classes and types in the

class model, to describe pre- and post conditions on operations and methods, and to describe

guards. OCL can be used to write expressions that evaluate to true or false, thus making it a

good choice for defining relational algebra formulas.

IBM has written a parser for OCL that can perform some basic syntax checking. This

parser may be incorporated into the agentTool architecture and used to verify specifications

written in OCL are correct. Portions of agent and conversation specifications in agentTool are

written in OCL and should be verifiable with an OCL parser.

72

AFIT/GCS/ENG/OOM-12

5.3.2 Verification of an Agent's State-based Behavior

Since an agent's behavior can be defined using state transition diagrams (Robinson,

2000), a system of agents can be verified by simulating the response agents have when receiving

and sending messages through conversations with other agents. Figure 44 shows an agent's state

based interior.

Figure 44: Agent State Based Interior (Robinson, 2000)

This would be similar to the research performed in this thesis and many of the same techniques

reapplied.

5.4 Summary

This research addresses a critical need in the development of multi-agent systems,

automatic verification. Automatic verification brings together the skills of computer scientists

and mathematicians resulting in software that is more dependable and robust than previously

attainable with traditional software development tools. Software engineers no longer have to

hope their agent conversations will work as expected. Automatic verification, once thought

73

AFIT/GCS/ENG/OOM-12

impossible to accomplish, is attainable and provides a much-needed tool for multi-agent

development systems.

74

AFIT/GCS/ENG/OOM-12

BIBLIOGRAPHY

Cleaveland, Ranee. "The Concurrency Workbench: A Semantics Based Tool for the Verification
of Concurrent Systems," ACM Transactions on Programming Languages and Systems,
15(1): 36-72 (January 1993).

DeLoach, Scott A. "Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems," Proceedings of a Workshop on Agent-Oriented Information
Systems (APIS '99). 45-57. Seattle WA. May 1, 1999.

Hailpern, Brent T. Verifying Concurrent Processes Using Temporal Logic. New York: Springer-
Verlag, 1982.

Harel, David. "Statecharts: A Visual Formalism For Complex Systems," Science of Computer
Programming, Volume 8: 231-274 (1987).

Hinchey, M.G. and J.P. Bowen. High-Integrity System Specification and Design. London:
Springer-Verlag, 1999.

Hoare, C.A. Communicating Sequential Processes. New York: Prentice-Hall, 1985.

Holzmann, Gerard J. "The Model Checker Spin," IEEE Transactions On Software Engineering,
Volume 23, Number 5: 279-295 (May 1997).

Kelley, Jay W. Air Force 2025. 2025 Support Office, Air University, Air Education and Training
Command. Air University Press, August 1996.

Lowe, Gavin and Bill Roscoe. "Using CSP to Detect Errors in the TMN Protocol," IEEE
Transactions on Software Engineering, Vol. 23, No. 10: (October 1997).

Manna, Zohar and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems. New
York: Springer-Verlag, 1992.

Milner, Robin. Communication and Concurrency. New York: Prentice-Hall, 1989.

Pressman, Roger S. Software Engineering: A Practitioner's Approach. New York: McGraw-Hill,
1997.

Raphael, Marc J. Knowledge Base Support For Design and Synthesis of Multi-agent Systems.
MS thesis, AFIT/ENG/00M-21. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 2000.

Rational Software Corporation. Object Constraint Language Specification, version 1.1, 1
September 1997.

Robinson, David J. A Component Based Approach to Agent Specification. MS thesis,
AFIT/ENG/00M-22. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 2000.

Shalikashvili, John M. Joint Vision 2010. Joint Staff: Pentagon, 1999.

75

AFIT/GCS/ENG/OOM-12

Stevens, Perdita. The Edinburgh Concurrency Workbench. User Manual. University of
Edinburgh, November 1998.

Sycara, Katia P. "Multiagent Systems," American Association for Artificial Intelligence: 79-92,
(Summer 1998).

Wood, Mark F. Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS thesis, AFIT/ENG/00M-26. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2000.

76

AFIT/GCS/ENG/OOM-12

APPENDIX A: MESSAGES FOR ERROR
CONVERSATION

PLEASE STAND BY... TESTING CONVERSATIONS...

!!!!!!!!!! OUTPUT OF SPIN ANALYSIS !!!!!!!!!!

Analysis Completed... Evaluating Analysis...

********** OUTPUT FROM DEADLOCK CHECK **********

CONVERSATION IS DEADLOCKED!!!

►,** OUTPUT FROM PROGRESS CHECK **********

CONVERSATION DOES NOT HAVE UNUSED STATES!!!

**** OUTPUT FROM SIMULATED RUN **********

****** i

proc 0 = :init:
proc 1 = Sendlnfolnitiator
proc 2 = SendlnfoResponder
proc 3 = CollectDatalnitiator
proc 4 = CollectDataResponder
q\p 0 12 3 4

1 CollectData!collectData
1 CollectData?collectData
1 CollectDataicollectionFailure
1 CollectData?collectionFailure
2 . Sendlnfoisend
2 . . SendInfo?send
2 . . Sendlnfo!acknowledge
2 . Sendlnfo?acknowledge

spin: trail ends after 16 steps

final state:

#processes: 5
queue 2 (Sendlnfo):
queue 1 (CollectData) :

proc 4 (CollectDataResponder) line 92 "verify" (state 27)
proc 3 (CollectDatalnitiator) line 65 "verify" (state 24)
proc 2 (SendlnfoResponder) line 46 "verify" (state 24) <valid

endstate>
proc 1 (Sendlnfolnitiator) line 25 "verify" (state 22) <valid

endstate>
proc 0 (:init:) line 114 "verify" (state 6) <valid endstate>

16
16
16

16:

16:
5 processes created

********** DETAILED DEADLOCK INFORMATION **********

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData
Participant Name = Responder
Current State = wait
State Transition = acknowledge

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = CollectData
Participant Name = Initiator
Current State = logFailure
State Transition = acknowledge

77

AFIT/GCS/ENG/OOM-12

********** TESTING COMPLETED * *********

Appendix B: Messages from Message Sequence
Verification

PLEASE STAND BY... TESTING MESSAGE SEQUENCE...

!!!!!!!!!! OUTPUT OF SPIN ANALYSIS !!!!!!!!!!

Analysis Completed... Evaluating Analysis...

********** OUTPUT FROM MESSAGE SEQUENCE CHECK **********

MESSAGE SEQUENCE IS VALID!!!

********** SEQUENCE TRACE IS AS FOLLOWS **********

proc
proc
proc
proc
proc
proc
proc
proc
proc
q\p

1
1
1
1
1
2
1
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
2
2
2
2
2
2
1
2

0 = :init:
1 = Sendlnfolnitiator
2 = SendlnfoResponder
3 = CollectDatalnitiator
4 = CollectDataResponder
5 = CollectDataResponder
6 =» CollectDatalnitiator
7 = Sendlnfolnitiator
8 = SendlnfoResponder
012345678

Sendlnfo!send
SendInfo?send
Sendlnfo!failureTransmission

SendInfo?failureTransmission
Sendlnfo!send

CollectData!collectData
SendInfo?send
Sendlnfo!failureTransmission

Sendlnfo?failureTransmission
Sendlnfo!send

CollectData?collectData
SendInfo?send
Sendlnfo!failureTransmission

SendInfo?failureTransmission
CollectDataIcollectionFailure

Sendlnfo!send
SendInfo?send
Sendlnfo!failureTransmission

CollectData?collectionFailure
SendInfo?failureTransmission
Sendlnfo!send

SendInfo?send
CollectData!collectData

Sendlnfo!failureTransmission
Sendlnfo?failureTransmission
Sendlnfo!send

SendInfo?send
CollectData?collectData
CollectData!return

CollectData?return
CollectData!failureTransmission

CollectData?failureTransmission
CollectData!return

Sendlnfo!send
CollectData?return

78

AFIT/GCS/ENG/OOM-12

spin: trail ends after 98 steps

final state:

♦processes: 10

98 proc 8
98 proc 7
98 proc 6
98 proc 5
98 proc 4
98 proc 3
98 proc 2
98 proc 1
98 proc 0
98 proc -

10 i processes CI

queue 1 (Sendlnfo): [send]
queue 2 (CollectData):
(SendlnfoResponder) line 15
(Sendlnfolnitiator) line 34
(CollectDatalnitiator) line
(CollectDataResponder) line
(CollectDataResponder) line
(CollectDatalnitiator) line
(SendlnfoResponder) line 9
(Sendlnfolnitiator) line 34
(:init:) line 110 "verify" (
(:never:) line 136 "verify"

created

"verify" (state 10)
"verify" (state 11)
56 "verify" (state 15)
88 "verify" (state 28)
83 "verify" (state 23)
60 "verify" (state 24)
"verify" (state 3)
"verify" (state 11)

state 10) <valid endstate>
(state 26) <valid endstate>

********** TESTING COMPLETED **********

79

AFIT/GCS/ENG/OOM-12

VITA

Captain Timothy H. Lacey was born on 26 October 1961 in Thomasville, Georgia. He

graduated from Colquitt County High School in Moultrie, Georgia in June 1979. He entered the

Air Force's enlisted force January 1983 and completed his undergraduate studies with a Bachelor

of Science degree in Computer Science, magna cum laude, in June 1991. He was commissioned

through the Air Force's Officer Training School (OTS) in November 1992.

Captain Lacey's first assignment was at Mountain Home AFB, Idaho as a Russian

simulator operator and maintainer in October 1983. In December 1989, he was assigned as a

computer programmer to Scott AFB, Illinois. While at Scott AFB, he completed his

undergraduate degree and received his commission through OTS. His first assignment as an

officer was to Hill AFB, Utah in April 1993. There he was a programmer manager for the Air

Force Mission Support System used by pilots to preplan their flights. In November 1995 he was

assigned to Boiling AFB, DC and worked for the Defense Intelligence Agencies Engineering

Review Board. In July 1998, he entered the Graduate School of Engineering's Computer

Systems Engineering program, Air Force Institute of Technology. Upon graduation, he will be

assigned to AFIT/SC at Wright Patterson AFB where he will be in charge of the Information

Systems Branch (SCB).

80

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2000

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

A FORMAL METHODOLOGY AND TECHNIQUE FOR VERIFYING
COMMUNICATION PROTOCOLS IN A MULTI-AGENT ENVIRONMENT

6. AUTHOR(S)

Timothy H. Lacey, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/00M-12

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
Atta: Captain Freeman Alex Kilpatrick
801 North Randolph Street
Room 732 9-65
Arlington VA 22203-1977 Commercial: (703) 696-6565

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Maj Scott A. DeLoach, ENG, DSN:785-3636, ext. 4622

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
As network bandwidth increases, distributed applications are becoming increasingly prevalent. Systems using these
applications are very complicated to build and must be dependable. Software agents are ideal for breaking complicated
problems into manageable subtasks. Agent conversations, a series of messages passed between agents, are the cornerstone of
multi-agent systems and must be deemed correct before being placed into service. The purpose of this research was to
develop a formal methodology and technique to verify that the communication protocols defined in a multi-agent environment
were valid. This was accomplished by examining agent conversations before deploying the system. An additional goal of this
research was to develop a proof-of-concept module for agentTool that automatically verified some of the important properties
identified in this methodology.

In the end, this research produced a methodology for automatically verifying conversations and the methodology was
implemented in the agentTool software development environment. Improvements and future work was also recommended as
a result of this effort.

14. SUBJECT TERMS
Agents, Conversations, Formal Verification, State Transition Diagrams, Promela, Spin,
agentTool, Deadlock, Livelock, Infinite Loops, Multi-agent Environment, Automatic
Verification, Automatic, Formal, Message Sequences, Feedback, Errors, State Tables

15. NUMBER OF PAGES

93
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

